No Arabic abstract
An approach is outline to constructing an optical potential that includes the effects of antisymmetry and target recoil. it is based on the retarded Greens function, which could make it a better starting point for applications to direct nuclear reactions, particularly when extended to coupled channels. Its form retains a simple connection to folding potentials, even in the presence of three-body forces.
The optical potential is a powerful instrument for calculations on a wide variety of nuclear reactions, in particular, for quasi-elastic lepton-nucleus scattering. Phenomenological optical potentials are successful in the description of data but may produce uncertainties in the interpretation of the results. Two recent theoretical optical potentials are presented: a global relativistic folding optical potential, that has been employed in relativistic models for quasi-elastic lepton-nucleus scattering, and a non relativistic optical potential derived from nucleon-nucleon chiral potentials at fourth order (N4LO), that has been applied to elastic proton-nucleus scattering.
I review the application of self-consistent Greens functions methods to study the properties of infinite nuclear systems. Improvements over the last decade, including the consistent treatment of three-nucleon forces and the development of extrapolation methods from finite to zero temperature, have allowed for realistic predictions of the equation of state of infinite symmetric, asymmetric and neutron matter based on chiral interactions. Microscopic properties, like momentum distributions or spectral functions, are also accessible. Using an indicative set of results based on a subset of chiral interactions, I summarise here the first-principles description of infinite nuclear system provided by Greens functions techniques, in the context of several issues of relevance for nuclear theory including, but not limited to, the role of short-range correlations in nuclear systems, nuclear phase transitions and the isospin dependence of nuclear observables.
Nonequilibrium Greens functions represent underutilized means of studying the time evolution of quantum many-body systems. In view of a rising computer power, an effort is underway to apply the Greens functions formalism to the dynamics of central nuclear reactions. As the first step, mean-field evolution for the density matrix for colliding slabs is studied in one dimension. The strategy to extend the dynamics to correlations is described.
The present thesis aims at studying the properties of symmetric nuclear and pure neutron matter from a Greens functions point of view, including two-body and three-body chiral forces. An extended self-consistent Greens function formalism is defined to consistently incorporate three-body forces in the many-body calculations. The effect of three-nucleon interactions is included via the construction of a dressed two-body density dependent force. This is obtained performing an average of the leading order three-body terms in the chiral effective field theory expansion. The dressed force corresponds to the use of an in-medium propagator in the average which takes into account the correlations characterizing the system at each stage of the many-body calculation. The total energy of the system is obtained by means of a modified Galitskii-Migdal-Koltun sumrule to correctly account for the effect of three-body forces. Microscopic as well as macroscopic properties of symmetric nuclear and pure neutron matter are analyzed in detailed.
We propose a new propagation formula for the Maxwell field in de Sitter space which exploit the conformal invariance of this field together with a conformal gauge condition. This formula allows to determine the classical electromagnetic field in the de Sitter space from given currents and initial data. It only uses the Greens function of the massless Minkowskian scalar field. This leads to drastic simplifications in practical calculations. We apply this formula to the classical problem of the two charges of opposite signs at rest at the North and South Poles of the de Sitter space.