No Arabic abstract
We prove the existence of a continuous quasi-plurisubharmonic solution to the Monge-Amp`ere equation on a compact Hermitian manifold for a very general measre on the right hand side. We admit measures dominated by capacity in a certain manner, in particular, moderate measures studied by Dinh-Nguyen-Sibony. As a consequence, we give a characterization of measures admitting Holder continuous quasi-plurisubharmonic potential, inspired by the work of Dinh-Nguyen.
We develop a new approach to $L^{infty}$-a priori estimates for degenerate complex Monge-Amp`ere equations on complex manifolds. It only relies on compactness and envelopes properties of quasi-plurisubharmonic functions. In a prequel cite{GL21a} we have shown how this method allows one to obtain new and efficient proofs of several fundamental results in Kahler geometry. In cite{GL21b} we have studied the behavior of Monge-Amp`ere volumes on hermitian manifolds. We extend here the techniques of cite{GL21a} to the hermitian setting and use the bounds established in cite{GL21b}, producing new relative a priori estimates, as well as several existence results for degenerate complex Monge-Amp`ere equations on compact hermitian manifolds.
Let $X$ be a compact Kahler manifold of dimension $n$ and $omega$ a Kahler form on $X$. We consider the complex Monge-Amp`ere equation $(dd^c u+omega)^n=mu$, where $mu$ is a given positive measure on $X$ of suitable mass and $u$ is an $omega$-plurisubharmonic function. We show that the equation admits a Holder continuous solution {it if and only if} the measure $mu$, seen as a functional on a complex Sobolev space $W^*(X)$, is Holder continuous. A similar result is also obtained for the complex Monge-Amp`ere equations on domains of $mathbb{C}^n$.
In this paper we consider the Monge-Amp`{e}re type equations on compact almost Hermitian manifolds. We derive a priori estimates under the existence of an admissible $mathcal{C}$-subsolution. Finally, we also obtain an existence theorem if there exists an admissible supersolution.
Let $(X, omega)$ be a compact Kahler manifold of complex dimension n and $theta$ be a smooth closed real $(1,1)$-form on $X$ such that its cohomology class ${ theta }in H^{1,1}(X, mathbb{R})$ is pseudoeffective. Let $varphi$ be a $theta$-psh function, and let $f$ be a continuous function on $X$ with bounded distributional laplacian with respect to $omega$ such that $varphi leq f. $ Then the non-pluripolar measure $theta_varphi^n:= (theta + dd^c varphi)^n$ satisfies the equality: $$ {bf{1}}_{{ varphi = f }} theta_varphi^n = {bf{1}}_{{ varphi = f }} theta_f^n,$$ where, for a subset $Tsubseteq X$, ${bf{1}}_T$ is the characteristic function. In particular we prove that [ theta_{P_{theta}(f)}^n= { bf {1}}_{{P_{theta}(f) = f}} theta_f^nqquad {rm and }qquad theta_{P_theta[varphi](f)}^n = { bf {1}}_{{P_theta[varphi](f) = f }} theta_f^n. ]
In this paper, the author studies quaternionic Monge-Amp`ere equations and obtains the existence and uniqueness of the solutions to the Dirichlet problem for such equations without any restriction on domains. Our paper not only answers to the open problem proposed by Semyon Alesker in [3], but also extends relevant results in [7] to the quaternionic vector space.