Groups of automorphisms of Riemann surfaces and maps of genus $p+1$ where $p$ is prime


Abstract in English

We classify compact Riemann surfaces of genus $g$, where $g-1$ is a prime $p$, which have a group of automorphisms of order $rho(g-1)$ for some integer $rhoge 1$, and determine isogeny decompositions of the corresponding Jacobian varieties. This extends results of Belolipetzky and the second author for $rho>6$, and of the first and third authors for $rho=3, 4, 5$ and $6$. As a corollary we classify the orientably regular hypermaps (including maps) of genus $p+1$, together with the non-orientable regular hypermaps of characteristic $-p$, with automorphism group of order divisible by the prime $p$; this extends results of Conder, v Sirav n and Tucker for maps.

Download