Discrimination Among Multiple Cutaneous and Proprioceptive Hand Percepts Evoked by Nerve Stimulation with Utah Slanted Electrode Arrays in Human Amputees


Abstract in English

Objective: This paper aims to demonstrate functional discriminability among restored hand sensations with different locations, qualities, and intensities that are evoked by microelectrode stimulation of residual afferent fibers in human amputees. Methods: We implanted a Utah Slanted Electrode Array (USEA) in the median and ulnar residual arm nerves of three transradial amputees and delivered stimulation via different electrodes and at different frequencies to produce various locations, qualities, and intensities of sensation on the missing hand. Blind discrimination trials were performed to determine how well subjects could discriminate among these restored sensations. Results: Subjects discriminated among restored sensory percepts with varying cutaneous and proprioceptive locations, qualities, and intensities in blind trials, including discrimination among up to 10 different location-intensity combinations (15/30 successes, p < 0.0005). Variations in the site of stimulation within the nerve, via electrode selection, enabled discrimination among up to 5 locations and qualities (35/35 successes, p < 0.0001). Variations in the stimulation frequency enabled discrimination among 4 different intensities at the same location (13/20 successes, p < 0.005). One subject discriminated among simultaneous, alternating, and isolated stimulation of two different USEA electrodes, as may be desired during multi-sensor closed-loop prosthesis use (20/25 successes, p < 0.001). Conclusion: USEA stimulation enables encoding of a diversity of functionally discriminable sensations with different locations, qualities, and intensities. Significance: These percepts provide a potentially rich source of sensory feedback that may enhance performance and embodiment during multi-sensor, closed-loop prosthesis use.

Download