Rotating mixed $^3$He-$^4$He nanodroplets


Abstract in English

Mixed $^3$He-$^4$He droplets created by hydrodynamic instability of a cryogenic fluid-jet may acquire angular momentum during their passage through the nozzle of the experimental apparatus. These free-standing droplets cool down to very low temperatures undergoing isotopic segregation, developing a nearly pure $^3$He crust surrounding a very $^4$He-rich superfluid core. Here, the stability and appearance of rotating mixed helium droplets are investigated using Density Functional Theory for an isotopic composition that highlights, with some marked exceptions related to the existence of the superfluid inner core, the analogies with viscous rotating droplets.

Download