Integrable turbulence developing from strongly nonlinear partially coherent waves


Abstract in English

We study numerically the integrable turbulence developing from strongly nonlinear partially coherent waves, in the framework of the focusing one-dimensional nonlinear Schrodinger equation. We find that shortly after the beginning of motion the turbulence enters a state characterized by a very slow evolution of statistics (the quasi-stationary state - QSS), and we concentrate on the detailed examination of the basic statistical functions in this state depending on the shape and the width of the initial spectrum. In particular, we show that the probability density function (PDF) of wavefield intensity is nearly independent of the initial spectrum and is very well approximated by a certain Bessel function representing an integral of the product of two exponential distributions. The PDF corresponds to the value of the second-order moment of intensity equal to 4, indicating enhanced generation of rogue waves. All waves of large amplitude that we have studied are very well approximated - both in space and in time - by the rational breather solutions of either the first (the Peregrine breather), or the second orders.

Download