No Arabic abstract
Knowledge Bases (KBs) contain a wealth of structured information about entities and predicates. This paper focuses on set-valued predicates, i.e., the relationship between an entity and a set of entities. In KBs, this information is often represented in two formats: (i) via counting predicates such as numberOfChildren and staffSize, that store aggregated integers, and (ii) via enumerating predicates such as parentOf and worksFor, that store individual set memberships. Both formats are typically complementary: unlike enumerating predicates, counting predicates do not give away individuals, but are more likely informative towards the true set size, thus this coexistence could enable interesting applications in question answering and KB curation. In this paper we aim at uncovering this hidden knowledge. We proceed in two steps. (i) We identify set-valued predicates from a given KB predicates via statistical and embedding-based features. (ii) We link counting predicates and enumerating predicates by a combination of co-occurrence, correlation and textual relatedness metrics. We analyze the prevalence of count information in four prominent knowledge bases, and show that our linking method achieves up to 0.55 F1 score in set predicate identification versus 0.40 F1 score of a random selection, and normalized discounted gains of up to 0.84 at position 1 and 0.75 at position 3 in relevant predicate alignments. Our predicate alignments are showcased in a demonstration system available at https://counqer.mpi-inf.mpg.de/spo.
The chase is a well-established family of algorithms used to materialize Knowledge Bases (KBs), like Knowledge Graphs (KGs), to tackle important tasks like query answering under dependencies or data cleaning. A general problem of chase algorithms is that they might perform redundant computations. To counter this problem, we introduce the notion of Trigger Graphs (TGs), which guide the execution of the rules avoiding redundant computations. We present the results of an extensive theoretical and empirical study that seeks to answer when and how TGs can be computed and what are the benefits of TGs when applied over real-world KBs. Our results include introducing algorithms that compute (minimal) TGs. We implemented our approach in a new engine, and our experiments show that it can be significantly more efficient than the chase enabling us to materialize KBs with 17B facts in less than 40 min on commodity machines.
Multiple web-scale Knowledge Bases, e.g., Freebase, YAGO, NELL, have been constructed using semi-supervised or unsupervised information extraction techniques and many of them, despite their large sizes, are continuously growing. Much research effort has been put into mining inference rules from knowledge bases. To address the task of rule mining over evolving web-scale knowledge bases, we propose a parallel incremental rule mining framework. Our approach is able to efficiently mine rules based on the relational model and apply updates to large knowledge bases; we propose an alternative metric that reduces computation complexity without compromising quality; we apply multiple optimization techniques that reduce runtime by more than 2 orders of magnitude. Experiments show that our approach efficiently scales to web-scale knowledge bases and saves over 90% time compared to the state-of-the-art batch rule mining system. We also apply our optimization techniques to the batch rule mining algorithm, reducing runtime by more than half compared to the state-of-the-art. To the best of our knowledge, our incremental rule mining system is the first that handles updates to web-scale knowledge bases.
Materialisation is often used in RDF systems as a preprocessing step to derive all facts implied by given RDF triples and rules. Although widely used, materialisation considers all possible rule applications and can use a lot of memory for storing the derived facts, which can hinder performance. We present a novel materialisation technique that compresses the RDF triples so that the rules can sometimes be applied to multiple facts at once, and the derived facts can be represented using structure sharing. Our technique can thus require less space, as well as skip certain rule applications. Our experiments show that our technique can be very effective: when the rules are relatively simple, our system is both faster and requires less memory than prominent state-of-the-art RDF systems.
Semantic parsing, as an important approach to question answering over knowledge bases (KBQA), transforms a question into the complete query graph for further generating the correct logical query. Existing semantic parsing approaches mainly focus on relations matching with paying less attention to the underlying internal structure of questions (e.g., the dependencies and relations between all entities in a question) to select the query graph. In this paper, we present a relational graph convolutional network (RGCN)-based model gRGCN for semantic parsing in KBQA. gRGCN extracts the global semantics of questions and their corresponding query graphs, including structure semantics via RGCN and relational semantics (label representation of relations between entities) via a hierarchical relation attention mechanism. Experiments evaluated on benchmarks show that our model outperforms off-the-shelf models.
Knowledge bases are prevalent in various domains and have been widely used in a large number of real applications such as applications in online encyclopedia, social media, biomedical fields, bibliographical networks. Due to their great importance, knowledge bases have received much attention from both the academia and industry community in recent years. In this paper, we provide a summary of the general statistics of several open-source and publicly accessible knowledge bases, ranging from the number of objects, relations to the object types and the relation types. With such statistics, this concise note can not only help researchers form a better and quick understanding of existing open accessible knowledge bases, but can also guide the general audience to use the resource effectively when they conduct research with knowledge bases.