Do you want to publish a course? Click here

Can Minkowski tensors of a porous microstructure characterize its permeability?

78   0   0.0 ( 0 )
 Added by Prapanch Nair
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the permeability of porous media can be reliably predicted from the Minkowski tensors (MTs) describing the pore microstructure geometry. To this end, we consider a large number of simulations of flow through periodic unit cells containing complex shaped obstacles. The prediction is achieved by training a deep neural network (DNN) using the simulation data with the MT elements as attributes. The obtained predictions allow for the conclusion that MTs of the pore microstructure contain sufficient information to determine the permeability, although the functional relation between the MTs and the permeability could be complex to determine.



rate research

Read More

Anisotropy of the permeability tensor in statistically uniform porous media of sizes used in typical computer simulations is studied. Although such systems are assumed to be isotropic by default, we show that de facto their anisotropic permeability can give rise to significant changes of transport parameters such as permeability and tortuosity. The main parameter controlling the anisotropy is $a/L$, being the ratio of the obstacle to system size. Distribution of the angle $alpha$ between the external force and the volumetric fluid stream is found to be approximately normal, and the standard deviation of $alpha$ is found to decay with the system size as $(a/L)^{d/2}$, where $d$ is the space dimensionality. These properties can be used to estimate both anisotropy-related statistical errors in large-scale simulations and the size of the representative elementary volume.
A homogenization approach is proposed for the treatment of porous wall boundary conditions in the computation of compressible viscous flows. Like any other homogenization approach, it eliminates the need for pore-resolved fluid meshes and therefore enables practical flow simulations in computational fluid domains with porous wall boundaries. Unlike alternative approaches however, it does not require prescribing a mass flow rate and does not introduce in the computational model a heuristic discharge coefficient. Instead, it models the inviscid flux through a porous wall surrounded by the flow as a weighted average of the inviscid flux at an impermeable surface and that through pores. It also introduces a body force term in the governing equations to account for friction loss along the pore boundaries. The source term depends on the thickness of the porous wall and the concept of an equivalent single pore. The feasibility of the latter concept is demonstrated using low-speed permeability test data for the fabric of the Mars Science Laboratory parachute canopy. The overall homogenization approach is illustrated with a series of supersonic flow computations through the same fabric and verified using supersonic, pore-resolved numerical simulations.
338 - Yingjie Liang , Wen Chen , Wei Xu 2018
Many theoretical and experimental results show that solute transport in heterogeneous porous media exhibits multi-scaling behaviors. To describe such non-Fickian diffusions, this work provides a distributed order Hausdorff diffusion model to describe the tracer transport in porous media. This model is proved to be equivalent with the diffusion equation model with a nonlinear time dependent diffusion coefficient. In conjunction with the structural derivative, its mean squared displacement (MSD) of the tracer particles is explicitly derived as a dilogarithm function when the weight function of the order distribution is a linear function of the time derivative order. This model can capture both accelerating and decelerating anomalous and ultraslow diffusions by varying the weight parameter c. In this study, the tracer transport in water-filled pore spaces of two-dimensional Euclidean is demonstrated as a decelerating sub-diffusion, and can well be described by the distributed order Hausdorff diffusion model with c = 1.73. While the Hausdorff diffusion model can accurately fit the sub-diffusion experimental data of the tracer transport in the pore-solid prefractal porous media.
In this paper, we study the effects of both the amount of open cell walls and their aperture sizes on solid foams permeability. FEM flow simulations are performed at both pore and macroscopic scales. For foams with fully interconnected pores, we obtain a robust power-law relationship between permeability and membrane aperture size. This result owns to the local pressure drop mechanism through the membrane aperture as described by Sampson for fluid flow through a circular orifice in a thin plate. Based on this local law, pore-network simulation of simple flow is used and is shown to reproduce successfully FEM results. This low computational cost method allowed to study in detail the effects of the open wall amount on percolation, percolating porosity and permeability. A model of effective permeability is proposed and shows ability to reproduce the results of network simulations. Finally, an experimental validation of the theoretical model on well controlled solid foam is presented.
Pore structures and gas transport properties in porous separators for polymer electrolyte fuel cells are evaluated both experimentally and through simulations. In the experiments, the gas permeabilities of two porous samples, a conventional sample and one with low electrical resistivity, are measured by a capillary flow porometer, and the pore size distributions are evaluated with mercury porosimetry. Local pore structures are directly observed with micro X-ray computed tomography (CT). In the simulations, the effective diffusion coefficients of oxygen and the air permeability in porous samples are calculated using random walk Monte Carlo simulations and computational fluid dynamics (CFD) simulations, respectively, based on the X-ray CT images. The calculated porosities and air permeabilities of the porous samples are in good agreement with the experimental values. The simulation results also show that the in-plane permeability is twice the through-plane permeability in the conventional sample, whereas it is slightly higher in the low-resistivity sample. The results of this study show that CFD simulation based on micro X-ray CT images makes it possible to evaluate anisotropic gas permeabilities in anisotropic porous media.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا