Do you want to publish a course? Click here

HS-stability and complex products in involution semigroups

59   0   0.0 ( 0 )
 Added by Erkko Lehtonen
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

When does the complex product of a given number of subsets of a group generate the same subgroup as their union? We answer this question in a more general form by introducing HS-stability and characterising the HS-stable involution subsemigroup generated by a subset of a given involution semigroup. We study HS-stability for the special cases of regular ${}^{*}$-semigroups and commutative involution semigroups.

rate research

Read More

We ascertain conditions and structures on categories and semigroups which admit the construction of pseudo-products and trace products respectively, making their connection as precise as possible. This topic is modelled on the ESN Theorem and its generalization to ample semigroups. Unlike some other variants of ESN, it is self-dual (two-sided), and the condition of commuting projections is relaxed. The condition that projections form a band (are closed under multiplication) is shown to be a very natural one. One-sided reducts are considered, and compared to (generalized) D-semigroups. Finally the special case when the category is a groupoid is examined.
In this paper, we investigate *-DMP elements in $*$-semigroups and $*$-rings. The notion of *-DMP element was introduced by Patr{i}cio in 2004. An element $a$ is *-DMP if there exists a positive integer $m$ such that $a^{m}$ is EP. We first characterize *-DMP elements in terms of the {1,3}-inverse, Drazin inverse and pseudo core inverse, respectively. Then, we give the pseudo core decomposition utilizing the pseudo core inverse, which extends the core-EP decomposition introduced by Wang for matrices to an arbitrary $*$-ring; and this decomposition turns to be a useful tool to characterize *-DMP elements. Further, we extend Wangs core-EP order from matrices to $*$-rings and use it to investigate *-DMP elements. Finally, we give necessary and sufficient conditions for two elements $a,~b$ in $*$-rings to have $aa^{scriptsizetextcircled{tiny D}}=bb^{scriptsizetextcircled{tiny D}}$, which contribute to investigate *-DMP elements.
The concept of a k-translatable groupoid is explored in depth. Some properties of idempotent k-translatable groupoids, left cancellative k-translatable groupoids and left unitary k-translatable groupoids are proved. Necessary and sufficient conditions are found for a left cancellative k-translatable groupoid to be a semigroup. Any such semigroup is proved to be left unitary and a union of disjoint copies of cyclic groups of the same order. Methods of constructing k-translatable semigroups that are not left cancellative are given.
Let R be a unital ring with involution, we give the characterizations and representations of the core and dual core inverses of an element in R by Hermitian elements (or projections) and units. For example, let a in R and n is an integer greater than or equal to 1, then a is core invertible if and only if there exists a Hermitian element (or a projection) p such that pa=0, a^n+p is invertible. As a consequence, a is an EP element if and only if there exists a Hermitian element (or a projection) p such that pa=ap=0, a^n+p is invertible. We also get a new characterization for both core invertible and dual core invertible of a regular element by units, and their expressions are shown. In particular, we prove that for n is an integer greater than or equal to 2, a is both Moore-Penrose invertible and group invertible if and only if (a*)^n is invertible along a.
62 - Tingting Li 2021
$R$ is a unital ring with involution. We investigate the characterizations and representations of weighted core inverse of an element in $R$ by idempotents and units. For example, let $ain R$ and $ein R$ be an invertible Hermitian element, $ngeqslant 1$, then $a$ is $e$-core invertible if and only if there exists an element (or an idempotent) $p$ such that $(ep)^{ast}=ep$, $pa=0$ and $a^{n}+p$ (or $a^{n}(1-p)+p$) is invertible. As a consequence, let $e, fin R$ be two invertible Hermitian elements, then $a$ is weighted-$mathrm{EP}$ with respect to $(e, f)$ if and only if there exists an element (or an idempotent) $p$ such that $(ep)^{ast}=ep$, $(fp)^{ast}=fp$, $pa=ap=0$ and $a^{n}+p$ (or $a^{n}(1-p)+p$) is invertible. These results generalize and improve conclusions in cite{Li}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا