Bow-tie structure and community identification of global supply chain network


Abstract in English

We study on topological properties of global supply chain network in terms of degree distribution, hierarchical structure, and degree-degree correlation in the global supply chain network. The global supply chain data is constructed by collecting various company data from the web site of Standard & Poors Capital IQ platform in 2018. The in- and out-degree distributions are characterized by a power law with in-degree exponent = 2.42 and out-degree exponent = 2.11. The clustering coefficient decays as power law with an exponent = 0.46. The nodal degree-degree correlation indicates the absence of assortativity. The Bow-tie structure of GWCC reveals that the OUT component is the largest and it consists 41.1% of total firms. The GSCC component comprises 16.4% of total firms. We observe that the firms in the upstream or downstream sides are mostly located a few steps away from the GSCC. Furthermore, we uncover the community structure of the network and characterize them according to their location and industry classification. We observe that the largest community consists of consumer discretionary sector mainly based in the US. These firms belong to the OUT component in the bow-tie structure of the global supply chain network. Finally, we confirm the validity for propositions S1 (short path length), S2 (power-law degree distribution), S3 (high clustering coefficient), S4 (fit-gets-richer growth mechanism), S5 (truncation of power-law degree distribution), and S7 (community structure with overlapping boundaries) in the global supply chain network.

Download