Do you want to publish a course? Click here

Towards a Complexity-theoretic Understanding of Restarts in SAT solvers

118   0   0.0 ( 0 )
 Added by Chunxiao Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Restarts are a widely-used class of techniques integral to the efficiency of Conflict-Driven Clause Learning (CDCL) Boolean SAT solvers. While the utility of such policies has been well-established empirically, a theoretical explanation of whether restarts are indeed crucial to the power of CDCL solvers is lacking. In this paper, we prove a series of theoretical results that characterize the power of restarts for various models of SAT solvers. More precisely, we make the following contributions. First, we prove an exponential separation between a {it drunk} randomized CDCL solver model with restarts and the same model without restarts using a family of satisfiable instances. Second, we show that the configuration of CDCL solver with VSIDS branching and restarts (with activities erased after restarts) is exponentially more powerful than the same configuration without restarts for a family of unsatisfiable instances. To the best of our knowledge, these are the first separation results involving restarts in the context of SAT solvers. Third, we show that restarts do not add any proof complexity-theoretic power vis-a-vis a number of models of CDCL and DPLL solvers with non-deterministic static variable and value selection.



rate research

Read More

Over the years complexity theorists have proposed many structural parameters to explain the surprising efficiency of conflict-driven clause-learning (CDCL) SAT solvers on a wide variety of large industrial Boolean instances. While some of these parameters have been studied empirically, until now there has not been a unified comparative study of their explanatory power on a comprehensive benchmark. We correct this state of affairs by conducting a large-scale empirical evaluation of CDCL SAT solver performance on nearly 7000 industrial and crafted formulas against several structural parameters such as backdoors, treewidth, backbones, and community structure. Our study led us to several results. First, we show that while such parameters only weakly correlate with CDCL solving time, certain combinations of them yield much better regression models. Second, we show how some parameters can be used as a lens to better understand the efficiency of different solving heuristics. Finally, we propose a new complexity-theoretic parameter, which we call learning-sensitive with restarts (LSR) backdoors, that extends the notion of learning-sensitive (LS) backdoors to incorporate restarts and discuss algorithms to compute them. We mathematically prove that for certain class of instances minimal LSR-backdoors are exponentially smaller than minimal-LS backdoors.
216 - P. M. B. Vitanyi 2012
We describe the Turing Machine, list some of its many influences on the theory of computation and complexity of computations, and illustrate its importance.
Over the last two decades, we have seen a dramatic improvement in the efficiency of conflict-driven clause-learning Boolean satisfiability (CDCL SAT) solvers on industrial problems from a variety of domains. The availability of such powerful general-purpose search tools as SAT solvers has led many researchers to propose SAT-based methods for cryptanalysis, including techniques for finding collisions in hash functions and breaking symmetric encryption schemes. Most of the previously proposed SAT-based cryptanalysis approaches are blackbox techniques, in the sense that the cryptanalysis problem is encoded as a SAT instance and then a CDCL SAT solver is invoked to solve the said instance. A weakness of this approach is that the encoding thus generated may be too large for any modern solver to solve efficiently. Perhaps a more important weakness of this approach is that the solver is in no way specialized or tuned to solve the given instance. To address these issues, we propose an approach called CDCL(Crypto) (inspired by the CDCL(T) paradigm in Satisfiability Modulo Theory solvers) to tailor the internal subroutines of the CDCL SAT solver with domain-specific knowledge about cryptographic primitives. Specifically, we extend the propagation and conflict analysis subroutines of CDCL solvers with specialized codes that have knowledge about the cryptographic primitive being analyzed by the solver. We demonstrate the power of this approach in the differential path and algebraic fault analysis of hash functions. Our initial results are very encouraging and reinforce the notion that this approach is a significant improvement over blackbox SAT-based cryptanalysis.
70 - Bernd R. Schuh 2017
A generalized 1-in-3SAT problem is defined and found to be in complexity class P when restricted to a certain subset of CNF expressions. In particular, 1-in-kSAT with no restrictions on the number of literals per clause can be decided in polynomial time when restricted to exact READ-3 formulas with equal number of clauses (m) and variables (n), and no pure literals. Also individual instances can be checked for easiness with respect to a given SAT problem. By identifying whole classes of formulas as being solvable efficiently the approach might be of interest also in the complementary search for hard instances.
270 - Bernd R. Schuh 2014
The aim of this short note is mainly pedagogical. It summarizes some knowledge about Boolean satisfiability (SAT) and the P=NP? problem in an elementary mathematical language. A convenient scheme to visualize and manipulate CNF formulae is introduced. Also some results like the formulae for the number of unsatisfied clauses and the number of solutions might be unknown.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا