No Arabic abstract
We present a novel methodology to detect imperfect bilateral symmetry in CT of human anatomy. In this paper, the structurally symmetric nature of the pelvic bone is explored and is used to provide interventional image augmentation for treatment of unilateral fractures in patients with traumatic injuries. The mathematical basis of our solution is on the incorporation of attributes and characteristics that satisfy the properties of intrinsic and extrinsic symmetry and are robust to outliers. In the first step, feature points that satisfy intrinsic symmetry are automatically detected in the Mobius space defined on the CT data. These features are then pruned via a two-stage RANSAC to attain correspondences that satisfy also the extrinsic symmetry. Then, a disparity function based on Tukeys biweight robust estimator is introduced and minimized to identify a symmetry plane parametrization that yields maximum contralateral similarity. Finally, a novel regularization term is introduced to enhance similarity between bone density histograms across the partial symmetry plane, relying on the important biological observation that, even if injured, the dislocated bone segments remain within the body. Our extensive evaluations on various cases of common fracture types demonstrate the validity of the novel concepts and the robustness and accuracy of the proposed method.
With the strength of deep generative models, 3D pose transfer regains intensive research interests in recent years. Existing methods mainly rely on a variety of constraints to achieve the pose transfer over 3D meshes, e.g., the need for manually encoding for shape and pose disentanglement. In this paper, we present an unsupervised approach to conduct the pose transfer between any arbitrate given 3D meshes. Specifically, a novel Intrinsic-Extrinsic Preserved Generative Adversarial Network (IEP-GAN) is presented for both intrinsic (i.e., shape) and extrinsic (i.e., pose) information preservation. Extrinsically, we propose a co-occurrence discriminator to capture the structural/pose invariance from distinct Laplacians of the mesh. Meanwhile, intrinsically, a local intrinsic-preserved loss is introduced to preserve the geodesic priors while avoiding heavy computations. At last, we show the possibility of using IEP-GAN to manipulate 3D human meshes in various ways, including pose transfer, identity swapping and pose interpolation with latent code vector arithmetic. The extensive experiments on various 3D datasets of humans, animals and hands qualitatively and quantitatively demonstrate the generality of our approach. Our proposed model produces better results and is substantially more efficient compared to recent state-of-the-art methods. Code is available: https://github.com/mikecheninoulu/Unsupervised_IEPGAN
Supervised learning is ubiquitous in medical image analysis. In this paper we consider the problem of meta-learning -- predicting which methods will perform well in an unseen classification problem, given previous experience with other classification problems. We investigate the first step of such an approach: how to quantify the similarity of different classification problems. We characterize datasets sampled from six classification problems by performance ranks of simple classifiers, and define the similarity by the inverse of Euclidean distance in this meta-feature space. We visualize the similarities in a 2D space, where meaningful clusters start to emerge, and show that the proposed representation can be used to classify datasets according to their origin with 89.3% accuracy. These findings, together with the observations of recent trends in machine learning, suggest that meta-learning could be a valuable tool for the medical imaging community.
A general homogenization procedure for periodic electromagnetic structures, when applied to layered media with asymmetric lattice cells, yields an effective tensor with magnetoelectric coupling. Accurate results for transmission and reflection are obtained even in cases where classical effective medium theory breaks down. Magnetoelectric coupling accounts for symmetry breaking in reflection and transmission when a non-symmetric structure is illuminated from two opposite sides.
This paper proposes a new extrinsic calibration of kaleidoscopic imaging system by estimating normals and distances of the mirrors. The problem to be solved in this paper is a simultaneous estimation of all mirror parameters consistent throughout multiple reflections. Unlike conventional methods utilizing a pair of direct and mirrored images of a reference 3D object to estimate the parameters on a per-mirror basis, our method renders the simultaneous estimation problem into solving a linear set of equations. The key contribution of this paper is to introduce a linear estimation of multiple mirror parameters from kaleidoscopic 2D projections of a single 3D point of unknown geometry. Evaluations with synthesized and real images demonstrate the performance of the proposed algorithm in comparison with conventional methods.
The generalization capability of neural networks across domains is crucial for real-world applications. We argue that a generalized object recognition system should well understand the relationships among different images and also the images themselves at the same time. To this end, we present a new domain generalization framework that learns how to generalize across domains simultaneously from extrinsic relationship supervision and intrinsic self-supervision for images from multi-source domains. To be specific, we formulate our framework with feature embedding using a multi-task learning paradigm. Besides conducting the common supervised recognition task, we seamlessly integrate a momentum metric learning task and a self-supervised auxiliary task to collectively utilize the extrinsic supervision and intrinsic supervision. Also, we develop an effective momentum metric learning scheme with K-hard negative mining to boost the network to capture image relationship for domain generalization. We demonstrate the effectiveness of our approach on two standard object recognition benchmarks VLCS and PACS, and show that our methods achieve state-of-the-art performance.