No Arabic abstract
We propose a simple framework based on $Delta(27)$ that leads to the successful cobimaximal lepton mixing ansatz, thus providing a predictive explanation for leptonic mixing observables. We explore first the effective neutrino mass operators, then present a specific model realization based on type I seesaw, and also propose a model with radiative 1-loop seesaw which features viable dark matter candidates.
The observed neutrino mixing, having a near maximal atmospheric neutrino mixing angle and a large solar mixing angle, is close to tri-bi-maximal, putting leptonic mixing in contrast with the small mixing of the quark sector. We discuss a model in which Delta(27) (a subgroup of SU(3)) is the family symmetry, and tri-bi-maximal mixing directly follows from the vacuum structure enforced by the discrete symmetry. The model accounts for the observed quark and lepton masses and the CKM matrix, as well as being consistent with an underlying stage of Grand Unification.
It has recently been shown that the phenomenologically successful pattern of cobimaximal neutrino mixing ($theta_{13} eq 0$, $theta_{23} = pi/4$, and $delta_{CP} = pm pi/2$) may be achieved in the context of the non-Abelian discrete symmetry $A_4$. In this paper, the same goal is achieved with $S_3 times Z_2$. The residual lepton $Z_3$ triality in the case of $A_4$ is replaced here by $Z_2 times Z_2$. The associated phenomenology of the scalar sector is discussed.
It has recently been shown that the phenomenologically successful pattern of cobimaximal neutrino mixing ($theta_{13} eq 0$, $theta_{23} = pi/4$, and $delta_{CP} = pm pi/2$) may be achieved in the context of the non-Abelian discrete symmetry $A_4$, if the neutrino mass matrix is diagonalized by an orthogonal matrix ${cal O}$. We study how this pattern would deviate if ${cal O}$ is replaced by an unitary matrix.
I propose a model of radiative charged-lepton and neutrino masses with $A_4$ symmetry. The soft breaking of $A_4$ to $Z_3$ lepton triality is accomplished by dimension-three terms. The breaking of $Z_3$ by dimension-two terms allow cobimaximal neutrino mixing $(theta_{13} eq 0, theta_{23} = pi/4, delta_{CP} = pm pi/2)$ to be realized with only very small finite calculable deviations from the residual lepton triality. This construction solves a long-standing technical problem inherent in renormalizable $A_4$ models since their inception.
If neutrinos are Dirac, the conditions for cobimaximal mixing, i.e. $theta_{23}=pi/4$ and $delta_{CP}=pm pi/2$ in the $3 times 3$ neutrino mixing matrix, are derived. One example with $A_4$ symmetry and radiative Dirac neutrino masses is presented.