Graph Signal Processing of Indefinite and Complex Graphs using Directed Variation


Abstract in English

In the field of graph signal processing (GSP), directed graphs present a particular challenge for the standard approaches of GSP to due to their asymmetric nature. The presence of negative- or complex-weight directed edges, a graphical structure used in fields such as neuroscience, critical infrastructure, and robot coordination, further complicates the issue. Recent results generalized the total variation of a graph signal to that of directed variation as a motivating principle for developing a graphical Fourier transform (GFT). Here, we extend these techniques to concepts of signal variation appropriate for indefinite and complex-valued graphs and use them to define a GFT for these classes of graph. Simulation results on random graphs are presented, as well as a case study of a portion of the fruit fly connectome.

Download