Ultrastrong plasmon-phonon coupling via epsilon-near-zero nanocavities


Abstract in English

Vibrational ultrastrong coupling (USC), where the light-matter coupling strength is comparable to the vibrational frequency of molecules, presents new opportunities to probe the interactions of molecules with zero-point fluctuations, harness cavity-enhanced chemical reactions, and develop novel devices in the mid-infrared regime. Here we use epsilon-near-zero nanocavities filled with a model polar medium (SiO$_2$) to demonstrate USC between phonons and gap plasmons. We present classical and quantum mechanical models to quantitatively describe the observed plasmon-phonon USC phenomena and demonstrate a splitting of up to 50% of the resonant frequency. Our wafer-scale nanocavity platform will enable a broad range of vibrational transitions to be harnessed for USC applications.

Download