Asymptotic Theory for Differentially Private Generalized $beta$-models with Parameters Increasing


Abstract in English

Modelling edge weights play a crucial role in the analysis of network data, which reveals the extent of relationships among individuals. Due to the diversity of weight information, sharing these data has become a complicated challenge in a privacy-preserving way. In this paper, we consider the case of the non-denoising process to achieve the trade-off between privacy and weight information in the generalized $beta$-model. Under the edge differential privacy with a discrete Laplace mechanism, the Z-estimators from estimating equations for the model parameters are shown to be consistent and asymptotically normally distributed. The simulations and a real data example are given to further support the theoretical results.

Download