Do you want to publish a course? Click here

A list-mode OSEM-based attenuation and scatter compensation method for SPECT

77   0   0.0 ( 0 )
 Added by Abhinav K. Jha
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Reliable attenuation and scatter compensation (ASC) is a prerequisite for quantification and beneficial for visual interpretation tasks in SPECT. In this paper, we develop a reconstruction method that uses the entire SPECT emission data, i.e. data in both the photopeak and scatter windows, acquired in list-mode format and including the energy attribute of the detected photon, to perform ASC. We implemented a GPU-based version of this method using an ordered subsets expectation maximization (OSEM) algorithm. The method was objectively evaluated using realistic simulation studies on the task of estimating uptake in the striatal regions of the brain in a 2-D dopamine transporter (DaT)-scan SPECT study. We observed that inclusion of data from the scatter window and using list-mode data yielded improved quantification compared to using data only from the photopeak window or using binned data. These results motivate further development of list-mode-based ASC methods that include scatter-window data for SPECT.



rate research

Read More

Attenuation compensation (AC) is a pre-requisite for reliable quantification and beneficial for visual interpretation tasks in single-photon emission computed tomography (SPECT). Typical AC methods require the availability of an attenuation map obtained using a transmission scan, such as a CT scan. This has several disadvantages such as increased radiation dose, higher costs, and possible misalignment between SPECT and CT scans. Also, often a CT scan is unavailable. In this context, we and others are showing that scattered photons in SPECT contain information to estimate the attenuation distribution. To exploit this observation, we propose a physics and learning-based method that uses the SPECT emission data in the photopeak and scatter windows to perform transmission-less AC in SPECT. The proposed method uses data acquired in the scatter window to reconstruct an initial estimate of the attenuation map using a physics-based approach. A convolutional neural network is then trained to segment this initial estimate into different regions. Pre-defined attenuation coefficients are assigned to these regions, yielding the reconstructed attenuation map, which is then used to reconstruct the activity map using an ordered subsets expectation maximization-based reconstruction approach. We objectively evaluated the performance of this method using a highly realistic simulation study conducted on the clinically relevant task of detecting perfusion defects in myocardial perfusion SPECT. Our results showed no statistically significant differences between the performance achieved using the proposed method and that with the true attenuation maps. Visually, the images reconstructed using the proposed method looked similar to those with the true attenuation map. Overall, these results provide evidence of the capability of the proposed method to perform transmission-less AC and motivate further evaluation.
In SPECT, list-mode (LM) format allows storing data at higher precision compared to binned data. There is significant interest in investigating whether this higher precision translates to improved performance on clinical tasks. Towards this goal, in this study, we quantitatively investigated whether processing data in LM format, and in particular, the energy attribute of the detected photon, provides improved performance on the task of absolute quantification of region-of-interest (ROI) uptake in comparison to processing the data in binned format. We conducted this evaluation study using a DaTscan brain SPECT acquisition protocol, conducted in the context of imaging patients with Parkinsons disease. This study was conducted with a synthetic phantom. A signal-known exactly/background-known-statistically (SKE/BKS) setup was considered. An ordered-subset expectation-maximization algorithm was used to reconstruct images from data acquired in LM format, including the scatter-window data, and including the energy attribute of each LM event. Using a realistic 2-D SPECT system simulation, quantification tasks were performed on the reconstructed images. The results demonstrated improved quantification performance when LM data was used compared to binning the attributes in all the conducted evaluation studies. Overall, we observed that LM data, including the energy attribute, yielded improved performance on absolute quantification tasks compared to binned data.
248 - S. Jan , G. Santin , D. Strul 2004
Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols, and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at the address http://www-lphe.epfl.ch/GATE/.
Reliable (accurate and precise) quantification of dose requires reliable absolute quantification of regional activity uptake. This is especially challenging for alpha-particle emitting radiopharmaceutical therapies ({alpha}-RPTs) due to the complex emission spectra, the very low number of detected counts, the impact of stray-radiation-related noise at these low counts, and other image-degrading processes such as attenuation, scatter, and collimator-detector response. The conventional reconstruction-based quantification methods are observed to be erroneous for {alpha}-RPT SPECT. To address these challenges, we developed an ultra-low-count quantitative SPECT (ULC-QSPECT) method that incorporates multiple strategies to perform reliable quantification. First, the method directly estimates the regional activity uptake from the projection data, obviating the reconstruction step. This makes the problem more well-posed and avoids reconstruction-related information loss. Next, the method compensates for radioisotope and SPECT physics, including the isotope spectra, scatter, attenuation, and collimator-detector response, using a Monte Carlo-based approach. Further, the method compensates for stray-radiation-related noise that becomes substantial at these low-count levels. The method was validated in the context of three-dimensional SPECT with 223Ra. Validation was performed using both realistic simulation studies, as well as synthetic and anthropomorphic physical-phantom studies. Across all studies, the ULC-QSPECT method yielded reliable estimates of regional uptake and outperformed conventional ordered subset expectation maximization (OSEM)-based reconstruction and geometric transfer matrix (GTM)-based partial-volume compensation methods. Further, the method yielded reliable estimates of mean uptake in lesions with varying intra-lesion heterogeneity in uptake.
Quantitative measures of uptake in caudate, putamen, and globus pallidus in dopamine transporter (DaT) brain SPECT have potential as biomarkers for the severity of Parkinson disease. Reliable quantification of uptake requires accurate segmentation of these regions. However, segmentation is challenging in DaT SPECT due to partial-volume effects, system noise, physiological variability, and the small size of these regions. To address these challenges, we propose an estimation-based approach to segmentation. This approach estimates the posterior mean of the fractional volume occupied by caudate, putamen, and globus pallidus within each voxel of a 3D SPECT image. The estimate is obtained by minimizing a cost function based on the binary cross-entropy loss between the true and estimated fractional volumes over a population of SPECT images, where the distribution of the true fractional volumes is obtained from magnetic resonance images from clinical populations. The proposed method accounts for both the sources of partial-volume effects in SPECT, namely the limited system resolution and tissue-fraction effects. The method was implemented using an encoder-decoder network and evaluated using realistic clinically guided SPECT simulation studies, where the ground-truth fractional volumes were known. The method significantly outperformed all other considered segmentation methods and yielded accurate segmentation with dice similarity coefficients of ~ 0.80 for all regions. The method was relatively insensitive to changes in voxel size. Further, the method was relatively robust up to +/- 10 degrees of patient head tilt along transaxial, sagittal, and coronal planes. Overall, the results demonstrate the efficacy of the proposed method to yield accurate fully automated segmentation of caudate, putamen, and globus pallidus in 3D DaT-SPECT images.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا