Statistical properties of periodic points for infinitely renormalizable unimodal maps


Abstract in English

For an infinitely renormalizable negative Schwarzian unimodal map $f$ with non-flat critical point, we analyze statistical properties of periodic points as the periods tend to infinity. Introducing a weight function $varphi$ which is a continuous or a geometric potential $varphi=-betalog|f|$ ($betainmathbb R$), we establish the level-2 Large Deviation Principle for weighted periodic points. From this, we deduce that all weighted periodic points equidistribute with respect to equilibrium states for the potential $varphi$. In particular, it follows that all periodic points are equidistributed with respect to measures of maximal entropy, and all periodic points weighted with their Lyapunov exponents are equidistributed with respect to the post-critical measure supported on the attracting Cantor set.

Download