No Arabic abstract
The electron (anti-)neutrino component of the T2K neutrino beam constitutes the largest background in the measurement of electron (anti-)neutrino appearance at the far detector. The electron neutrino scattering is measured directly with the T2K off-axis near detector, ND280. The selection of the electron (anti-)neutrino events in the plastic scintillator target from both neutrino and anti-neutrino mode beams is discussed in this paper. The flux integrated single differential charged-current inclusive electron (anti-)neutrino cross-sections, $dsigma/dp$ and $dsigma/dcos(theta)$, and the total cross-sections in a limited phase-space in momentum and scattering angle ($p > 300$ MeV/c and $theta leq 45^{circ}$) are measured using a binned maximum likelihood fit and compared to the neutrino Monte Carlo generator predictions, resulting in good agreement.
We report the measurements of single and double differential cross section of muon neutrino charged-current interactions on carbon with a single positively charged pion in the final state at the T2K off-axis near detector using $5.56times10^{20}$ protons on target. The analysis uses data control samples for the background subtraction and the cross section signal, defined as a single negatively charged muon and a single positively charged pion exiting from the target nucleus, is extracted using an unfolding method. The model dependent cross section, integrated over the T2K off-axis neutrino beam spectrum peaking at $0.6$~GeV, is measured to be $sigma = (11.76 pm 0.44 text{(stat)} pm 2.39 text{(syst)}) times 10^{-40} text{cm}^2$~$text{nucleon}^{-1}$. Various differential cross sections are measured, including the first measurement of the Adler angles for single charged pion production in neutrino interactions with heavy nuclei target.
The T2K off-axis near detector, ND280, is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ~1 GeV as a function of electron momentum, electron scattering angle and four-momentum transfer of the interaction. The total flux-averaged $ u_e$ charged current cross-section on carbon is measured to be $1.11pm0.09~(stat)pm0.18~(syst)times10^{-38} cm^2/nucleon$. The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is $1.23times10^{-38} cm^2/nucleon$ and the GENIE prediction is $1.08times10^{-38} cm^2/nucleon$. The total $ u_e$ charged current cross-section result is also in agreement with data from the Gargamelle experiment.
We report a measurement of cross section $sigma( u_{mu}+{rm nucleus}rightarrowmu^{-}+X)$ and the first measurements of the cross section $sigma(bar{ u}_{mu}+{rm nucleus}rightarrowmu^{+}+X)$ and their ratio $R(frac{sigma(bar u)}{sigma( u)})$ at (anti-)neutrino energies below 1.5 GeV. We determine the single momentum bin cross section measurements, averaged over the T2K $bar{ u}/ u$-flux, for the detector target material (mainly Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory frame kinematics of $theta_{mu}<32^circ$ and $p_{mu}>$500 MeV/c. The results are $sigma(bar{ u})=left( 0.900pm0.029{rm (stat.)}pm0.088{rm (syst.)}right)times10^{-39}$ and $sigma( u)=left( 2.41 pm0.022{rm{(stat.)}}pm0.231{rm (syst.)} right)times10^{-39}$ in units of cm$^{2}$/nucleon and $Rleft(frac{sigma(bar{ u})}{sigma( u)}right)= 0.373pm0.012{rm (stat.)}pm0.015{rm (syst.)}$.
We report a measurement of the flux-integrated cross section for inclusive muon neutrino charged-current interactions on carbon. The double differential measurements are given as function of the muon momentum and angle. Relative to our previous publication on this topic, these results have an increased angular acceptance and higher statistics. The data sample presented here corresponds to $5.7 times 10^{20}$ protons-on-target. The total flux-integrated cross section is measured to be $(6.950 pm 0.662) times 10^{-39}$ cm$^2$nucleon$^{-1}$ and is consistent with our simulation.
This paper presents a measurement of the charged current interaction rate of the electron neutrino beam component of the beam above $1.5$~GeV using the large fiducial mass of the T2K $pi^0$ detector. The predominant poriton of the $ u_e$ flux ($sim$85 %) at these energies comes from kaon decays. The measured ratio of the observed beam interaction rate to the predicted rate in the detector with water targets filled is 0.89 $pm$ 0.08 (stat.) $pm$ 0.11 (sys.), and with the water targets emptied is 0.90 $pm$ 0.09 (stat.) $pm$ 0.13 (sys.). The ratio obtained for the interactions on water only from an event subtraction method is 0.87 $pm$ 0.33 (stat.) $pm$ 0.21 (sys.). This is the first measurement of the interaction rate of electron neutrinos on water, which is particularly of interest to experiments with water Cherenkov detectors.