Do you want to publish a course? Click here

Planet gap opening across stellar masses

119   0   0.0 ( 0 )
 Added by Catriona Sinclair
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Annular structures in proto-planetary discs, such as gaps and rings, are now ubiquitously found by high-resolution ALMA observations. Under the hypothesis that they are opened by planets, in this paper we investigate how the minimum planet mass needed to open a gap varies across different stellar host masses and distances from the star. The dependence on the stellar host mass is particularly interesting because, at least in principle, gap opening around low mass stars should be possible for lower mass planets, giving us a look into the young, low mass planet population. Using dusty hydrodynamical simulations, we find however the opposite behaviour, as a result of the fact that discs around low mass stars are geometrically thicker: gap opening around low mass stars can require more massive planets. Depending on the theoretical isochrone employed to predict the relationship between stellar mass and luminosity, the gap opening planet mass could also be independent of stellar mass, but in no case we find that gap opening becomes easier around low mass stars. This would lead to the expectation of a {it lower} incidence of such structures in lower mass stars, since exoplanet surveys show that low mass stars have a lower fraction of giant planets. More generally, our study enables future imaging observations as a function of stellar mass to be interpreted using information on the mass vs. luminosity relations of the observed samples.



rate research

Read More

105 - Ruobing Dong 2016
High contrast imaging instruments such as GPI and SPHERE are discovering gap structures in protoplanetary disks at an ever faster pace. Some of these gaps may be opened by planets forming in the disks. In order to constrain planet formation models using disk observations, it is crucial to find a robust way to quantitatively back out the properties of the gap-opening planets, in particular their masses, from the observed gap properties, such as their depths and widths. Combing 2D and 3D hydrodynamics simulations with 3D radiative transfer simulations, we investigate the morphology of planet-opened gaps in near-infrared scattered light images. Quantitatively, we obtain correlations that directly link intrinsic gap depths and widths in the gas surface density to observed depths and widths in images of disks at modest inclinations under finite angular resolution. Subsequently, the properties of the surface density gaps enable us to derive the disk scale height at the location of the gap $h$, and to constrain the quantity $M_{rm p}^2/alpha$, where $M_{rm p}$ is the mass of the gap-opening planet and $alpha$ characterizes the viscosity in the gap. As examples, we examine the gaps recently imaged by VLT/SPHERE, Gemini/GPI, and Subaru/HiCIAO in HD 97048, TW Hya, HD 169142, LkCa 15, and RX J1615.3-3255. Scale heights of the disks and possible masses of the gap-opening planets are derived assuming each gap is opened by a single planet. Assuming $alpha=10^{-3}$, the derived planet mass in all cases are roughly between 0.1-1 $M_{rm J}$.
128 - Zhaohuan Zhu , James M. Stone , 2013
We study wakes and gap opening by low mass planets in gaseous protoplanetary disks threaded by net vertical magnetic fields which drive magnetohydrodynamical (MHD) turbulence through the magnetorotational instabilty (MRI), using three dimensional simulations in the unstratified local shearing box approximation. The wakes, which are excited by the planets, are damped by shocks similar to the wake damping in inviscid hydrodynamic (HD) disks. Angular momentum deposition by shock damping opens gaps in both MHD turbulent disks and inviscid HD disks even for low mass planets, in contradiction to the thermal criterion for gap opening. To test the viscous criterion, we compared gap properties in MRI-turbulent disks to those in viscous HD disks having the same stress, and found that the same mass planet opens a significantly deeper and wider gap in net vertical flux MHD disks than in viscous HD disks. This difference arises due to the efficient magnetic field transport into the gap region in MRI disks, leading to a larger effective alpha within the gap. Thus, across the gap, the Maxwell stress profile is smoother than the gap density profile, and a deeper gap is needed for the Maxwell stress gradient to balance the planetary torque density. We also confirmed the large excess torque close to the planet in MHD disks, and found that long-lived density features (termed zonal flows) produced by the MRI can affect planet migration. The comparison with previous results from net toroidal flux/zero flux MHD simulations indicates that the magnetic field geometry plays an important role in the gap opening process. Overall, our results suggest that gaps can be commonly produced by low mass planets in realistic protoplanetary disks, and caution the use of a constant alpha-viscosity to model gaps in protoplanetary disks.
179 - K. Poppenhaeger 2014
Stellar magnetic activity is an important factor in the formation and evolution of exoplanets. Magnetic phenomena like stellar flares, coronal mass ejections, and high-energy emission affect the exoplanetary atmosphere and its mass loss over time. One major question is whether the magnetic evolution of exoplanet host stars is the same as for stars without planets; tidal and magnetic interactions of a star and its close-in planets may play a role in this. Stellar magnetic activity also shapes our ability to detect exoplanets with different methods in the first place, and therefore we need to understand it properly to derive an accurate estimate of the existing exoplanet population. Here I review recent theoretical and observational results, as well as outline some avenues for future progress.
We still do not understand how planets form, or why extra-solar planetary systems are so different from our own solar system. But the last few years have dramatically changed our view of the discs of gas and dust around young stars. Observations with the Atacama Large Millimeter/submillimeter Array (ALMA) and extreme adaptive-optics systems have revealed that most --- if not all --- discs contain substructure, including rings and gaps, spirals, azimuthal dust concentrations, and shadows cast by misaligned inner discs. These features have been interpreted as signatures of newborn protoplanets, but the exact origin is unknown. Here we report the kinematic detection of a few Jupiter-mass planet located in a gas and dust gap at 130 au in the disc surrounding the young star HD 97048. An embedded planet can explain both the disturbed Keplerian flow of the gas, detected in CO lines, and the gap detected in the dust disc at the same radius. While gaps appear to be a common feature in protoplanetary discs, we present a direct correspondence between a planet and a dust gap, indicating that at least some gaps are the result of planet-disc interactions.
Stars produce explosive flares, which are believed to be powered by the release of energy stored in coronal magnetic field configurations. It has been shown that solar flares exhibit energy distributions typical of self-organized critical systems. This study applies a novel flare detection technique to data obtained by NASAs TESS mission and identifies $sim10^6$ flaring events on $sim10^5$ stars across spectral types. Our results suggest that magnetic reconnection events that maintain the topology of the magnetic field in a self-organized critical state are ubiquitous among stellar coronae.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا