No Arabic abstract
Characterizing the properties of groundwater aquifers is essential for predicting aquifer response and managing groundwater resources. In this work, we develop a high-dimensional scalable Bayesian inversion framework governed by a three-dimensional quasi-static linear poroelastic model to characterize lateral permeability variations in groundwater aquifers. We determine the maximum a posteriori (MAP) point of the posterior permeability distribution from centimeter-level surface deformation measurements obtained from Interferometric Synthetic Aperture Radar (InSAR). The scalability of our method to high parameter dimension is achieved through the use of adjoint-based derivatives, inexact Newton methods to determine the MAP point, and a Matern class sparse prior precision operator. Together, these guarantee that the MAP point is found at a cost, measured in number of forward/adjoint poroelasticity solves, that is independent of the parameter dimension. We apply our methodology to a test case for a municipal well in Mesquite, Nevada, in which InSAR and GPS surface deformation data are available. We solve problems with up to 320,824 state variable degrees of freedom (DOFs) and 16,896 parameter DOFs. A consistent treatment of noise level is employed so that the aquifer characterization result does not depend on the pixel spacing of surface deformation data. Our results show that the use of InSAR data significantly improves characterization of lateral aquifer heterogeneity, and the InSAR-based aquifer characterization recovers complex lateral displacement trends observed by independent daily GPS measurements.
Uncertainty quantification of groundwater (GW) aquifer parameters is critical for efficient management and sustainable extraction of GW resources. These uncertainties are introduced by the data, model, and prior information on the parameters. Here we develop a Bayesian inversion framework that uses Interferometric Synthetic Aperture Radar (InSAR) surface deformation data to infer the laterally heterogeneous permeability of a transient linear poroelastic model of a confined GW aquifer. The Bayesian solution of this inverse problem takes the form of a posterior probability density of the permeability. Exploring this posterior using classical Markov chain Monte Carlo (MCMC) methods is computationally prohibitive due to the large dimension of the discretized permeability field and the expense of solving the poroelastic forward problem. However, in many partial differential equation (PDE)-based Bayesian inversion problems, the data are only informative in a few directions in parameter space. For the poroelasticity problem, we prove this property theoretically for a one-dimensional problem and demonstrate it numerically for a three-dimensional aquifer model. We design a generalized preconditioned Crank--Nicolson (gpCN) MCMC method that exploits this intrinsic low dimensionality by using a low-rank based Laplace approximation of the posterior as a proposal, which we build scalably. The feasibility of our approach is demonstrated through a real GW aquifer test in Nevada. The inherently two dimensional nature of InSAR surface deformation data informs a sufficient number of modes of the permeability field to allow detection of major structures within the aquifer, significantly reducing the uncertainty in the pressure and the displacement quantities of interest.
Surface displacements associated with the average subsidence due to hydrocarbon exploitation in southwest of Iran which has a long history in oil production, can lead to significant damages to surface and subsurface structures, and requires serious consideration. In this study, the Small BAseline Subset (SBAS) approach, which is a multi-temporal Interferometric Synthetic Aperture Radar (InSAR) algorithm was employed to resolve ground deformation in the Marun region, Iran. A total of 22 interferograms were generated using 10 Envisat ASAR images. The mean velocity map obtained in the Line-Of-Sight (LOS) direction of satellite to the ground reveals the maximum subsidence on order of 13.5 mm per year over the field due to both tectonic and non-tectonic features. In order to assess the effect of non-tectonic features such as petroleum extraction on ground surface displacement, the results of InSAR have been compared with the oil production rate, which have shown a good agreement.
Image based diagnostics are interpreted in the context of spatial resolution. The same is true for tomographic image reconstruction. Current empirically driven approaches to quantify spatial resolution rely on a deterministic formulation based on point-spread functions which neglect the statistical prior information, that is integral to rank-deficient tomography. We propose a statistical spatial resolution measure based on the covariance of the reconstruction (point estimate) and show that the prior information acts as a lower limit for the spatial resolution. Furthermore, the spatial resolution measure can be employed for designing tomographic systems under consideration of spatial inhomogeneity of spatial resolution.
We investigate the possibility to extract information contained in seismic waveforms propagating in fluid-filled porous media by developing and using a full waveform inversion procedure valid for layered structures. To reach this objective, we first solve the forward problem by implementing the Biot theory in a reflectivity-type simulation program. We then study the sensitivity of the seismic response of stratified media to the poroelastic parameters. Our numerical tests indicate that the porosity and consolidation parameter are the most sensitive parameters in forward and inverse modeling, whereas the permeability has only a very limited influence on the seismic response. Next, the analytical expressions of the sensitivity operators are introduced in a generalized least-square inversion algorithm based on an iterative modeling of the seismic waveforms. The application of this inversion procedure to synthetic data shows that the porosity as well as the fluid and solid parameters can be correctly reconstructed as long as the other parameters are well known. However, the strong seismic coupling between some of the model parameters makes it difficult to fully characterize the medium by a multi-parameter inversion scheme. One solution to circumvent this difficulty is to combine several model parameters according to rock physics laws to invert for composite parameters. Another possibility is to invert the seismic data for the perturbations of the medium properties, such as those resulting from a gas injection.
We introduce a new algorithm for reinforcement learning called Maximum aposteriori Policy Optimisation (MPO) based on coordinate ascent on a relative entropy objective. We show that several existing methods can directly be related to our derivation. We develop two off-policy algorithms and demonstrate that they are competitive with the state-of-the-art in deep reinforcement learning. In particular, for continuous control, our method outperforms existing methods with respect to sample efficiency, premature convergence and robustness to hyperparameter settings while achieving similar or better final performance.