Do you want to publish a course? Click here

The lithium-rotation connection in the newly discovered young stellar stream Psc-Eri (Meingast 1)

94   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. As a fragile element, lithium is a sensitive probe of physical processes occurring in stellar interiors. Aims. We aim at investigating the relationship between lithium abundance and rotation rate in low-mass members of the newly discovered 125~Myr-old Psc-Eri stellar stream. Methods. We obtained high resolution optical spectra and measure the equivalent width of the 607.8 nm LiI line for 40 members of the Psc-Eri stream, whose rotational periods have been derived by arXiv:1905.10588. Results. We show that a tight correlation exists between lithium content and rotation rate among the late-G to early K-type stars of the Psc-Eri stream. Fast rotators are systematically Li-rich, while slow rotators are Li-depleted. This trend mimics the one previously reported for the similar age Pleiades cluster. Conclusions. The lithium-rotation connection thus seems to be universal over a restricted effective temperature range for low-mass stars at or close to the zero-age main sequence, and does not depend on environmental conditions.



rate research

Read More

FU Orionis-type stars are young stellar objects showing large outbursts due to highly enhanced accretion from the circumstellar disk onto the protostar. FUor-type outbursts happen in a wide variety of sources from the very embedded ones to those with almost no sign of extended emission beyond the disk. The subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. We used VLT/VISIR to obtain the first spectra that cover the 8-13 $mu$m mid-infrared wavelength range in low-resolution of five recently discovered FUors. Four objects from our sample show the 10 $mu$m silicate feature in emission. We study the shape and strength of the silicate feature in these objects and find that they mostly contain large amorphous grains, suggesting that large grains are typically not settled to the midplane in FUor disks. This is a general characteristic of FUors, as opposed to regular T Tauri-type stars whose disks display anything from pristine small grains to significant grain growth. We classify our targets by determining whether the silicate feature is in emission or in absorption, and confront them with the evolutionary scenarios on the dispersal of the envelopes around young stars. In our sample, all Class II objects exhibit silicate emission, while for Class I objects, the appearance of the feature in emission or absorption depends on the viewing angle with respect to the outflow cavity. This highlights the importance of geometric effects when interpreting the silicate feature.
Context: We present a newly discovered class of low-luminosity, dusty, evolved objects in the Magellanic Clouds. These objects have dust excesses, stellar parameters, and spectral energy distributions similar to those of dusty post-asymptotic giant branch (post-AGB) stars. However, they have lower luminosities and hence lower masses. We suggest that they have evolved off the red giant branch (RGB) instead of the AGB as a result of binary interaction. Aims: In this study we aim to place these objects in an evolutionary context and establish an evolutionary connection between RGB binaries (such as the sequence E variables) and our new sample of objects. Methods: We compared the theoretically predicted birthrates of the progeny of RGB binaries to the observational birthrates of the new sample of objects. Results: We find that there is order-of-magnitude agreement between the observed and predicted birthrates of post-RGB stars. The sources of uncertainty in the birthrates are discussed; the most important sources are probably the observational incompleteness factor and the post-RGB evolution rates. We also note that mergers are relatively common low on the RGB and that stars low on the RGB with mid-IR excesses may recently have undergone a merger. Conclusions: Our sample of dusty post-RGB stars most likely provides the first observational evidence for a newly discovered phase in binary evolution: post-RGB binaries with circumstellar dust.
(Abridged) Context: Both X-ray and radio observations offer insight into the high-energy processes of young stellar objects (YSOs). The observed thermal X-ray emission can be accompanied by both thermal and nonthermal radio emission. Due to variability, simultaneous X-ray and radio observations are a priori required, but results have been inconclusive. Aims: We use archival X-ray and radio observations of the Orion Nebula Cluster (ONC) to significantly enlarge the sample size of known YSOs with both X-ray and radio detections. Methods: We study the ONC using multi-epoch non-simultaneous archival Chandra X-ray and NRAO Very Large Array (VLA) single-band radio data. The multiple epochs allow us to reduce the impact of variability by obtaining approximated quiescent fluxes. Results: We find that only a small fraction of the X-ray sources (7%) have radio counterparts, even if 60% of the radio sources have X-ray counterparts. The radio flux density is typically too low to distinguish thermal and nonthermal radio sources. Only a small fraction of the YSOs with detections in both bands are compatible with the empirical Guedel-Benz (GB) relation. Most of the sources not compatible with the GB relation are proplyds, and thus likely thermal sources, but only a fraction of the proplyds is detected in both bands, such that the role of these sources is inconclusive. Conclusions: While the radio sources appear to be globally unrelated to the X-ray sources, the X-ray dataset clearly is much more sensitive than the radio data. We find tentative evidence that known non-thermal radio sources and saturated X-ray sources are indeed close to the empirical relation, even if skewed to higher radio luminosities, as they are expected to be. Most of the sources that are clearly incompatible with the empirical relation are proplyds which could instead plausibly be thermal radio sources.
The evolution of lithium abundance over a stars lifetime is indicative of transport processes operating in the stellar interior. We revisit the relationship between lithium content and rotation rate previously reported for cool dwarfs in the Pleiades cluster. We derive new LiI 670.8 nm equivalent width measurements from high-resolution spectra obtained for low-mass Pleiades members. We combine these new measurements with previously published ones, and use the Kepler/K2 rotational periods recently derived for Pleiades cool dwarfs to investigate the lithium-rotation connection in this 125 Myr-old cluster. The new data confirm the correlation between lithium equivalent width and stellar spin rate for a sample of 51 early K-type members of the cluster, where fast rotating stars are systematically lithium-rich compared to slowly rotating ones. The correlation is valid for all stars over the (J-Ks) color range 0.50-0.70 mag, corresponding to a mass range from about 0.75 to 0.90 solar mass, and may extend down to lower masses. We argue that the dispersion in lithium equivalent widths observed for cool dwarfs in the Pleiades cluster reflects an intrinsic scatter in lithium abundances, and suggest that the physical origin of the lithium dispersion pattern is to be found in the pre-main sequence rotational history of solar-type stars.
The recently discovered eclipsing binary system TYC 2675-663-1 is a X-ray source, and shows properties in the optical that are similar to the W UMa systems, but are somewhat unusual compared to what is seen in other contact binary systems. The goal of this work is to characterize its properties and investigate its nature by means of detailed photometric and spectroscopic observations. We have performed extensive V-band photometric measurements with the INTEGRAL satellite along with ground-based multi-band photometric observations, as well as high-resolution spectroscopic monitoring from which we have measured the radial velocities of the components. These data have been analysed to determine the stellar properties, including the absolute masses and radii. Additional low-resolution spectroscopy was obtained to investigate spectral features. From the measured eclipse timings we determine an orbital period for the binary of P=0.4223576+-0.0000009 days. The light-curve and spectroscopic analyses reveal the observations to be well represented by a model of an overcontact system composed of main-sequence F5 and G7 stars (temperature difference of nearly 1000 K), with the possible presence of a third star. Low-resolution optical spectroscopy reveals a complex H alpha emission, and other features that are not yet understood. The unusually large mass ratio of q=0.81+-0.05 places it in the rare H (high mass ratio) subclass of the W UMa systems, which are presumably on their way to coalescence.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا