No Arabic abstract
Let X, Y be asymmetric normed spaces and Lc(X, Y) the convex cone of all linear continuous operators from X to Y. It is known that in general, Lc(X, Y) is not a vector space. The aim of this note is to prove, using the Baire category theorem, that if Lc(X, Y) is a vector space for some asymmetric normed space Y , then X is isomorphic to its associated normed space (the converse is true for every asymmetric normed space Y and is easy to establish). For this, we introduce an index of symmetry of the space X denoted c(X) $in$ [0, 1] and we give the link between the index c(X) and the fact that Lc(X, Y) is in turn an asymmetric normed space for every asymmetric normed space Y. Our study leads to a topological classification of asymmetric normed spaces.
We modify the very well known theory of normed spaces $(E, orm)$ within functional analysis by considering a sequence $( orm_n : ninN)$ of norms, where $ orm_n$ is defined on the product space $E^n$ for each $ninN$. Our theory is analogous to, but distinct from, an existing theory of `operator spaces; it is designed to relate to general spaces $L^p$ for $pin [1,infty]$, and in particular to $L^1$-spaces, rather than to $L^2$-spaces. After recalling in Chapter 1 some results in functional analysis, especially in Banach space, Hilbert space, Banach algebra, and Banach lattice theory that we shall use, we shall present in Chapter 2 our axiomatic definition of a `multi-normed space $((E^n, orm_n) : nin N)$, where $(E, orm)$ is a normed space. Several different, equivalent, characterizations of multi-normed spaces are given, some involving the theory of tensor products; key examples of multi-norms are the minimum and maximum multi-norm based on a given space. Multi-norms measure `geometrical features of normed spaces, in particular by considering their `rate of growth. There is a strong connection between multi-normed spaces and the theory of absolutely summing operators. A substantial number of examples of multi-norms will be presented. Following the pattern of standard presentations of the foundations of functional analysis, we consider generalizations to `multi-topological linear spaces through `multi-null sequences, and to `multi-bounded linear operators, which are exactly the `multi-continuous operators. We define a new Banach space ${mathcal M}(E,F)$ of multi-bounded operators, and show that it generalizes well-known spaces, especially in the theory of Banach lattices. We conclude with a theory of `orthogonal decompositions of a normed space with respect to a multi-norm, and apply this to construct a `multi-dual space.
For every $alpha<omega_1$ we establish the existence of a separable Banach space whose Szlenk index is $omega^{alphaomega+1}$ and which is universal for all separable Banach spaces whose Szlenk-index does not exceed $omega^{alphaomega}$. In order to prove that result we provide an intrinsic characterization of which Banach spaces embed into a space admitting an FDD with upper estimates.
The aim of this note is to study existence and main properties of direct and inverse limits in the category of normed $L^0$-modules (in the sense of Gigli) over a metric measure space.
We show that a Banach space with numerical index one cannot enjoy good convexity or smoothness properties unless it is one-dimensional. For instance, it has no WLUR points in its unit ball, its norm is not Frechet smooth and its dual norm is neither smooth nor strictly convex. Actually, these results also hold if the space has the (strictly weaker) alternative Daugavet property. We construct a (non-complete) strictly convex predual of an infinite-dimensional $L_1$ space (which satisfies a property called lushness which implies numerical index~1). On the other hand, we show that a lush real Banach space is neither strictly convex nor smooth, unless it is one-dimensional. In particular, if a subspace $X$ of the real space $C[0,1]$ is smooth or strictly convex, then $C[0,1]/X$ contains a copy of $C[0,1]$. Finally, we prove that the dual of any lush infinite-dimensional real space contains a copy of $ell_1$.
If alpha and beta are countable ordinals such that beta eq 0, denote by tilde{T}_{alpha,beta} the completion of $c_{00}$ with respect to the implicitly defined norm ||x|| = max{||x||_{c_{0}}, 1/2 sup sum_{i=1}^{j}||E_{i}x||}, where the supremum is taken over all finite subsets E_{1},...,E_{j} of $mathbb{N}$ such that $E_{1}<...<E_{j}$ and {min E_{1},...,min E_{j}} in S_beta. It is shown that the Bourgain $ell^{1}$-index of tilde{T}_{alpha,beta} is omega^{alpha+beta.omega}. In particular, if alpha =omega^{alpha_{1}}. m_{1}+...+omega^{alpha_{n}}. m_{n} in Cantor normal form and alpha_{n} is not a limit ordinal, then there exists a Banach space whose ell^{1}-index is omega^{alpha}.