Causal effect estimation from observational data is a crucial but challenging task. Currently, only a limited number of data-driven causal effect estimation methods are available. These methods either provide only a bound estimation of the causal effect of a treatment on the outcome, or generate a unique estimation of the causal effect, but making strong assumptions on data and having low efficiency. In this paper, we identify a practical problem setting and propose an approach to achieving unique and unbiased estimation of causal effects from data with hidden variables. For the approach, we have developed the theorems to support the discovery of the proper covariate sets for confounding adjustment (adjustment sets). Based on the theorems, two algorithms are proposed for finding the proper adjustment sets from data with hidden variables to obtain unbiased and unique causal effect estimation. Experiments with synthetic datasets generated using five benchmark Bayesian networks and four real-world datasets have demonstrated the efficiency and effectiveness of the proposed algorithms, indicating the practicability of the identified problem setting and the potential of the proposed approach in real-world applications.