No Arabic abstract
Monitoring chromospheric and photospheric indexes of magnetic activity can provide valuable information, especially the interaction between different parts of the atmosphere and their response to magnetic fields. We extract chromospheric indexes, S and Rhk+, for 59,816 stars from LAMOST spectra in the LAMOST-Kepler program, and photospheric index, Reff, for 5575 stars from Kepler light curves. The log Reff shows positive correlation with log Rhk+. We estimate the power-law indexes between Reff and Rhk+ for F-, G-, and K-type stars, respectively. We also confirm the dependence of both chromospheric and photospheric activity on stellar rotation. Ca II H and K emissions and photospheric variations generally decrease with increasing rotation periods for stars with rotation periods exceeding a few days. The power-law indexes in exponential decay regimes show different characteristics in the two activity-rotation relations. The updated largest sample including the activity proxies and reported rotation periods provides more information to understand the magnetic activity for cool stars.
The asteroseismic and planetary studies, like all research related to stars, need precise and accurate stellar atmospheric parameters as input. We aim at deriving the effective temperature (Teff), the surface gravity (log g), the metallicity ([Fe/H]), the projected rotational velocity (v sin i) and the MK type for 169 F, G, K, and M-type Kepler targets which were observed spectroscopically from the ground with five different instruments. We use two different spectroscopic methods to analyse 189 high-resolution, high-signal-to-noise spectra acquired for the 169 stars. For 67 stars, the spectroscopic atmospheric parameters are derived for the first time. KIC 9693187 and 11179629 are discovered to be double-lined spectroscopic binary systems. The results obtained for those stars for which independent determinations of the atmospheric parameters are available in the literature are used for a comparative analysis. As a result, we show that for solar-type stars the accuracy of present determinations of atmospheric parameters is +/- 150 K in Teff, +/- 0.15 dex in [Fe/H], and +/-? 0.3 dex in log g. Finally, we confirm that the curve-of-growth analysis and the method of spectral synthesis yield systematically different atmospheric parameters when they are applied to stars hotter than 6,000 K.
The study of stellar activity is important because it can provide new constraints for dynamo models, when combined with surface rotation rates and the depth of the convection zone. We know that the dynamo mechanism, which is believed to be the main process to rule the magnetic cycle of solar-like stars at least, results from the interaction between (differential) rotation, convection, and magnetic field. The Kepler mission has been collecting data for a large number of stars during 4 years allowing us to investigate magnetic stellar cycles. We investigated the Kepler light curves to look for magnetic activity or even hints of magnetic activity cycles. Based on the photometric data we also looked for new magnetic indexes to characterise the magnetic activity of the stars. We selected a sample of 22 solar-like F stars that have a rotation period smaller than 12 days. We performed a time-frequency analysis using the Morlet wavelet yielding a magnetic proxy. We computed the magnetic index S_ph as the standard deviation of the whole time series and the index <S_ph> that is the mean of standard deviations measured in subseries of length five times the rotation period of the star. We defined new indicators to take into account the fact that complete magnetic cycles are not observed for all the stars, such as the contrast between high and low activity. We also inferred the Rossby number of the stars and studied their stellar background. This analysis shows different types of behaviours in the 22 F stars. Two stars show behaviours very similar to magnetic activity cycles. Five stars show long-lived spots or active regions suggesting the existence of active longitudes. Two stars of our sample seem to have a decreasing or increasing trend in the temporal variation of the magnetic proxies. Finally the last group of stars show magnetic activity (with presence of spots) but no sign of cycle.
We present a survey of far-ultraviolet (FUV; 1150 - 1450 Ang) emission line spectra from 71 planet-hosting and 33 non-planet-hosting F, G, K, and M dwarfs with the goals of characterizing their range of FUV activity levels, calibrating the FUV activity level to the 90 - 360 Ang extreme-ultraviolet (EUV) stellar flux, and investigating the potential for FUV emission lines to probe star-planet interactions (SPIs). We build this emission line sample from a combination of new and archival observations with the Hubble Space Telescope-COS and -STIS instruments, targeting the chromospheric and transition region emission lines of Si III, N V, C II, and Si IV. We find that the exoplanet host stars, on average, display factors of 5 - 10 lower UV activity levels compared with the non-planet hosting sample; this is explained by a combination of observational and astrophysical biases in the selection of stars for radial-velocity planet searches. We demonstrate that UV activity-rotation relation in the full F - M star sample is characterized by a power-law decline (with index $alpha$ ~ -1.1), starting at rotation periods >~3.5 days. Using N V or Si IV spectra and a knowledge of the stars bolometric flux, we present a new analytic relationship to estimate the intrinsic stellar EUV irradiance in the 90 - 360 Ang band with an accuracy of roughly a factor of ~2. Finally, we study the correlation between SPI strength and UV activity in the context of a principal component analysis that controls for the sample biases. We find that SPIs are not a statistically significant contributor to the observed UV activity levels.
The inhibition of small-scale convection in the Sun dominates the long-term radial velocity (RV) variability: it therefore has a critical effect on light exoplanet detectability using RV techniques. We here extend our previous analysis of stellar convective blueshift and its dependence on magnetic activity to a larger sample of stars in order to extend the Teff range, to study the impact of other stellar properties, and finally to improve the comparison between observed RV jitter and expected RV variations. We estimate a differential velocity shift for Fe and Ti lines of different depths and derive an absolute convective blueshift using the Sun as a reference for a sample of 360 F7-K4 stars with different properties (age, Teff, metallicity). We confirm the strong variation in convective blueshift with Teff and its dependence on (as shown in the line list in Paper I) activity level. Although we do not observe a significant effect of age or cyclic activity, stars with a higher metallicity tend to have a lower convective blueshift, with a larger effect than expected from numerical simulations. Finally, we estimate that for 71% of the stars in our sample the RV and LogRHK variations are compatible with the effect of activity on convection, as observed in the solar case, while for the other stars, other sources (such as binarity or companions) must be invoked to explain the large RV variations. We also confirm a relationship between LogRHK and metallicity, which may affect discussions of the possible relationship between metallicity and exoplanets, as RV surveys are biased toward low LogRHK and possibly toward high-metallicity stars. We conclude that activity and metallicity strongly affect the small-scale convection levels in stars in the F7-K4 range, with a lower amplitude for the lower mass stars and a larger amplitude for low-metallicity stars.
Rotational light modulation in Kepler photometry of K - A stars is used to estimate the absolute rotational shear. The rotation frequency spread in 2562 carefully selected stars with known rotation periods is measured using time-frequency diagrams. The variation of rotational shear as a function of effective temperature in restricted ranges of rotation period is determined. The shear increases to a maximum in F stars, but decreases somewhat in the A stars. Theoretical models reproduce the temperature variation quite well. The dependence of rotation shear on rotation rate in restricted temperature ranges is also determined. The dependence of the shear on the rotation rate is weak in K and G stars, increases rapidly for F stars and is strongest in A stars. For stars earlier than type K, a discrepancy exists between the predicted and observed variation of shear with rotation rate. There is a strong increase in the fraction of stars with zero frequency spread with increasing effective temperature. The time-frequency diagrams for A stars are no different from those in cool stars, further supporting the presence of spots in stars with radiative envelopes.