No Arabic abstract
We present a low-energy model describing the reconstruction of the electronic spectrum in twisted bilayers of honeycomb crystals with broken sublattice symmetry. The resulting moire patterns are classified into two families with different symmetry. In both cases, flat bands appear at relatively large angles, without any magic angle condition. Transitions between them give rise to sharp resonances in the optical absorption spectrum at frequencies well below the gap of the monolayer. Owing to their chiral symmetry, twisted bilayers display circular dichroism, i.e., different absorption of left and right circularly-polarized light. This optical activity is a nonlocal property determined by the stacking. In hexagonal boron nitride, sensitivity to the stacking leads to strikingly different circular dichroism in the two types of moires. Our calculations exemplify how subtle properties of the electronic wavefunctions encoded in current correlations between the layers control physical observables of moire materials.
We investigate the chirality of phonon modes in twisted bilayer WSe2. We demonstrate distinct chiral behavior of the K/K valley phonon modes for twist angles close to 0 degrees and close to 60 degrees. Moreover, we discover two sets of well-separated chiral valley modes in moire lattices for angles close to 60 degrees. These emergent moire chiral valley phonons originate from inversion symmetry breaking at the moire scale. We also find similar emergent chiral modes in moire patterns of strain-engineered bilayer WSe2 and MoSe2/WSe2 heterostructure. Furthermore, we observe the flattening of bands near the phononic band-gap edges for a broad range of twist angles in twisted bilayer WSe2. Our findings, which are expected to be generic for moire systems composed of two-dimensional materials that break inversion symmetry, are relevant for understanding electron-phonon and exciton-phonon scattering, and for designing phononic crystals to mimic behaviors of electrons in moire materials.
Collective plasma excitations in moire flat bands display unique properties reflecting strong electron-electron interactions and unusual carrier dynamics in these systems. Unlike the conventional two-dimensional plasmon modes, dispersing as $sqrt{k}$ at low frequencies and plunging into particle-hole continuum at higher frequencies, the moire plasmons pierce through the flat-band continuum and acquire a strong over-the-band character. Due to the complex structure of the moire superlattice unit cell, the over-the-band plasmons feature several distinct branches connected through zone folding in the superlattice Brillouin zone. Using a toy Hubbard model for the correlated insulating order in a flat band, we predict that these high-frequency modes become strongly dipole-active upon the system undergoing charge ordering, with the low-frequency modes gapped out within the correlated insulator gap. Strong dipole moments and sensitivity to charge order make these modes readily accessible by optical measurements, providing a convenient diagnostic of the correlated states.
Achieving Bloch oscillations of free carriers under a direct current, a long-sought-after collective many-body behavior, has been challenging due to stringent constraints on the band properties. We argue that the flat bands in moire graphene fulfill the basic requirements for observing Bloch oscillations, offering an appealing alternative to the stacked quantum wells used in previous work aiming to access this regime. Bloch-oscillating moire superlattices emit a comb-like spectrum of incommensurate frequencies, a property of interest for converting direct currents into high-frequency currents and developing broad-band amplifiers in THz domain. The oscillations can be synchronized through coupling to an oscillator mode in a photonic or plasmonic resonator. Phase-coherent collective oscillations in the resonant regime provide a realization of current-pumped THz lasing.
We theoretically study the effect of magnetic moire superlattice on the topological surface states by introducing a continuum model of Dirac electrons with a single Dirac cone moving in the time-reversal symmetry breaking periodic pontential. The Zeeman-type moire potentials generically gap out the moire surface Dirac cones and give rise to isolated flat Chern minibands with Chern number $pm1$. This result provides a promising platform for realizing the time-reversal breaking correlated topological phases. In a $C_6$ periodic potential, when the scalar $U_0$ and Zeeman $Delta_1$ moire potential strengths are equal to each other, we find that energetically the first three bands of $Gamma$-valley moire surface electrons are non-degenerate and realize i) an $s$-orbital model on a honeycomb lattice, ii) a degenerate $p_x,p_y$-orbitals model on a honeycomb lattice, and iii) a hybridized $sd^2$-orbital model on a kagome lattice, where moire surface Dirac cones in these bands emerge. When $U_0 eqDelta_1$, the difference between the two moire potential serves as an effective spin-orbit coupling and opens a topological gap in the emergent moire surface Dirac cones.
Moire superlattices in transition metal dichalcogenide (TMD) heterostructures can host novel correlated quantum phenomena due to the interplay of narrow moire flat bands and strong, long-range Coulomb interactions1-5. However, microscopic knowledge of the atomically-reconstructed moire superlattice and resulting flat bands is still lacking, which is critical for fundamental understanding and control of the correlated moire phenomena. Here we quantitatively study the moire flat bands in three-dimensional (3D) reconstructed WSe2/WS2 moire superlattices by comparing scanning tunneling spectroscopy (STS) of high quality exfoliated TMD heterostructure devices with ab initio simulations of TMD moire superlattices. A strong 3D buckling reconstruction accompanied by large in-plane strain redistribution is identified in our WSe2/WS2 moire heterostructures. STS imaging demonstrates that this results in a remarkably narrow and highly localized K-point moire flat band at the valence band edge of the heterostructure. A series of moire flat bands are observed at different energies that exhibit varying degrees of localization. Our observations contradict previous simplified theoretical models but agree quantitatively with ab initio simulations that fully capture the 3D structural reconstruction. Here the strain redistribution and 3D buckling dominate the effective moire potential and result in moire flat bands at the Brillouin zone K points.