Do you want to publish a course? Click here

Preference Modeling with Context-Dependent Salient Features

56   0   0.0 ( 0 )
 Added by Amanda Bower
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We consider the problem of estimating a ranking on a set of items from noisy pairwise comparisons given item features. We address the fact that pairwise comparison data often reflects irrational choice, e.g. intransitivity. Our key observation is that two items compared in isolation from other items may be compared based on only a salient subset of features. Formalizing this framework, we propose the salient feature preference model and prove a finite sample complexity result for learning the parameters of our model and the underlying ranking with maximum likelihood estimation. We also provide empirical results that support our theoretical bounds and illustrate how our model explains systematic intransitivity. Finally we demonstrate strong performance of maximum likelihood estimation of our model on both synthetic data and two real data sets: the UT Zappos50K data set and comparison data about the compactness of legislative districts in the US.

rate research

Read More

Effectively modeling phenomena present in highly nonlinear dynamical systems whilst also accurately quantifying uncertainty is a challenging task, which often requires problem-specific techniques. We present a novel, domain-agnostic approach to tackling this problem, using compositions of physics-informed random features, derived from ordinary differential equations. The architecture of our model leverages recent advances in approximate inference for deep Gaussian processes, such as layer-wise weight-space approximations which allow us to incorporate random Fourier features, and stochastic variational inference for approximate Bayesian inference. We provide evidence that our model is capable of capturing highly nonlinear behaviour in real-world multivariate time series data. In addition, we find that our approach achieves comparable performance to a number of other probabilistic models on benchmark regression tasks.
The interpretation of feature importance in machine learning models is challenging when features are dependent. Permutation feature importance (PFI) ignores such dependencies, which can cause misleading interpretations due to extrapolation. A possible remedy is more advanced conditional PFI approaches that enable the assessment of feature importance conditional on all other features. Due to this shift in perspective and in order to enable correct interpretations, it is therefore important that the conditioning is transparent and humanly comprehensible. In this paper, we propose a new sampling mechanism for the conditional distribution based on permutations in conditional subgroups. As these subgroups are constructed using decision trees (transformation trees), the conditioning becomes inherently interpretable. This not only provides a simple and effective estimator of conditional PFI, but also local PFI estimates within the subgroups. In addition, we apply the conditional subgroups approach to partial dependence plots (PDP), a popular method for describing feature effects that can also suffer from extrapolation when features are dependent and interactions are present in the model. We show that PFI and PDP based on conditional subgroups often outperform methods such as conditional PFI based on knockoffs, or accumulated local effect plots. Furthermore, our approach allows for a more fine-grained interpretation of feature effects and importance within the conditional subgroups.
The randomized-feature approach has been successfully employed in large-scale kernel approximation and supervised learning. The distribution from which the random features are drawn impacts the number of features required to efficiently perform a learning task. Recently, it has been shown that employing data-dependent randomization improves the performance in terms of the required number of random features. In this paper, we are concerned with the randomized-feature approach in supervised learning for good generalizability. We propose the Energy-based Exploration of Random Features (EERF) algorithm based on a data-dependent score function that explores the set of possible features and exploits the promising regions. We prove that the proposed score function with high probability recovers the spectrum of the best fit within the model class. Our empirical results on several benchmark datasets further verify that our method requires smaller number of random features to achieve a certain generalization error compared to the state-of-the-art while introducing negligible pre-processing overhead. EERF can be implemented in a few lines of code and requires no additional tuning parameters.
This paper proposes a new mean-field framework for over-parameterized deep neural networks (DNNs), which can be used to analyze neural network training. In this framework, a DNN is represented by probability measures and functions over its features (that is, the function values of the hidden units over the training data) in the continuous limit, instead of the neural network parameters as most existing studies have done. This new representation overcomes the degenerate situation where all the hidden units essentially have only one meaningful hidden unit in each middle layer, and further leads to a simpler representation of DNNs, for which the training objective can be reformulated as a convex optimization problem via suitable re-parameterization. Moreover, we construct a non-linear dynamics called neural feature flow, which captures the evolution of an over-parameterized DNN trained by Gradient Descent. We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures. Furthermore, we show, for Res-Net, when the neural feature flow process converges, it reaches a global minimal solution under suitable conditions. Our analysis leads to the first global convergence proof for over-parameterized neural network training with more than $3$ layers in the mean-field regime.
113 - Sentao Miao , Xi Chen , Xiuli Chao 2019
We consider a context-based dynamic pricing problem of online products which have low sales. Sales data from Alibaba, a major global online retailer, illustrate the prevalence of low-sale products. For these products, existing single-product dynamic pricing algorithms do not work well due to insufficient data samples. To address this challenge, we propose pricing policies that concurrently perform clustering over products and set individual pricing decisions on the fly. By clustering data and identifying products that have similar demand patterns, we utilize sales data from products within the same cluster to improve demand estimation and allow for better pricing decisions. We evaluate the algorithms using the regret, and the result shows that when product demand functions come from multiple clusters, our algorithms significantly outperform traditional single-product pricing policies. Numerical experiments using a real dataset from Alibaba demonstrate that the proposed policies, compared with several benchmark policies, increase the revenue. The results show that online clustering is an effective approach to tackling dynamic pricing problems associated with low-sale products. Our algorithms were further implemented in a field study at Alibaba with 40 products for 30 consecutive days, and compared to the products which use business-as-usual pricing policy of Alibaba. The results from the field experiment show that the overall revenue increased by 10.14%.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا