Cesium $nD_{J}$+$6S_{1/2}$ Rydberg molecules and their permanent electric dipole moments


Abstract in English

Cs$_2$ Rydberg-ground molecules consisting of a Rydberg, $nD_{J}$ (33 $leq$ $n$ $leq$ 39), and a ground state atom, 6$S_{1/2} (F=$3 or 4$)$, are investigated by photo-association spectroscopy in a cold atomic gas. We observe vibrational spectra that correspond to triplet $^TSigma$ and mixed $^{S,T}Sigma$ molecular states. We establish scaling laws for the energies of the lowest vibrational states vs principal quantum number and obtain zero-energy singlet and triplet $s$-wave scattering lengths from experimental data and a Fermi model. Line broadening in electric fields reveals the permanent molecular electric-dipole moments; measured values agree well with calculations. We discuss the negative polarity of the dipole moments, which differs from previously reported cases.

Download