From birth associations to field stars: mapping the small-scale orbit distribution in the Galactic disc


Abstract in English

Stars born at the same time in the same place should have formed from gas of the same element composition. But most stars subsequently disperse from their birth siblings, in orbit and orbital phase, becoming field stars. Here we explore and provide direct observational evidence for this process in the Milky Way disc, by quantifying the probability that orbit-similarity among stars implies indistinguishable metallicity. We define the orbit similarity among stars through their distance in action-angle space, $Delta (J,theta)$, and their abundance similarity simply by $Delta$[Fe/H]. Analyzing a sample of main sequence stars from Gaia DR2 and LAMOST, we find an excess of pairs with the same metallicity ($Deltamathrm{[Fe/H]}<0.1$) that extends to remarkably large separations in $Delta (J,theta)$ that correspond to nearly 1 kpc distances. We assess the significance of this effect through a mock sample, drawn from a smooth and phase-mixed orbit distribution. Through grouping such star pairs into associations with a friend-of-friends algorithm linked by $Delta (J,theta)$, we find 100s of mono-abundance groups with $ge 3$ (to $gtrsim 20$) members; these groups -- some clusters, some spread across the sky -- are over an order-of-magnitude more abundant than expected for a smooth phase-space distribution, suggesting that we are witnessing the dissolution of stellar birth associations into the field.

Download