No Arabic abstract
Chemical reactions occur in energy, environmental, biological, and many other natural systems, and the inference of the reaction networks is essential to understand and design the chemical processes in engineering and life sciences. Yet, revealing the reaction pathways for complex systems and processes is still challenging due to the lack of knowledge of the involved species and reactions. Here, we present a neural network approach that autonomously discovers reaction pathways from the time-resolved species concentration data. The proposed Chemical Reaction Neural Network (CRNN), by design, satisfies the fundamental physics laws, including the Law of Mass Action and the Arrhenius Law. Consequently, the CRNN is physically interpretable such that the reaction pathways can be interpreted, and the kinetic parameters can be quantified simultaneously from the weights of the neural network. The inference of the chemical pathways is accomplished by training the CRNN with species concentration data via stochastic gradient descent. We demonstrate the successful implementations and the robustness of the approach in elucidating the chemical reaction pathways of several chemical engineering and biochemical systems. The autonomous inference by the CRNN approach precludes the need for expert knowledge in proposing candidate networks and addresses the curse of dimensionality in complex systems. The physical interpretability also makes the CRNN capable of not only fitting the data for a given system but also developing knowledge of unknown pathways that could be generalized to similar chemical systems.
The use of mathematical methods for the analysis of chemical reaction systems has a very long history, and involves many types of models: deterministic versus stochastic, continuous versus discrete, and homogeneous versus spatially distributed. Here we focus on mathematical models based on deterministic mass-action kinetics. These models are systems of coupled nonlinear differential equations on the positive orthant. We explain how mathematical properties of the solutions of mass-action systems are strongly related to key properties of the networks of chemical reactions that generate them, such as specif
We consider stochastic models of chemical reaction networks with time dependent input rates and several types of molecules. We prove that, in despite of strong time dependence of input rates, there is a kind of homeostasis phenomenon: far away from input nodes the mean numbers of molecules of each type become approximately constant (do not depend on time).
The Bond Graph approach and the Chemical Reaction Network approach to modelling biomolecular systems developed independently. This paper brings together the two approaches by providing a bond graph interpretation of the chemical reaction network concept of complexes. Both closed and open systems are discussed. The method is illustrated using a simple enzyme-catalysed reaction and a trans-membrane transporter.
In this work, we design a type of controller that consists of adding a specific set of reactions to an existing mass-action chemical reaction network in order to control a target species. This set of reactions is effective for both deterministic and stochastic networks, in the latter case controlling the mean as well as the variance of the target species. We employ a type of network property called absolute concentration robustness (ACR). We provide applications to the control of a multisite phosphorylation model as well as a receptor-ligand signaling system. For this framework, we use the so-called deficiency zero theorem from chemical reaction network theory as well as multiscaling model reduction methods. We show that the target species has approximately Poisson distribution with the desired mean. We further show that ACR controllers can bring robust perfect adaptation to a target species and are complementary to a recently introduced antithetic feedback controller used for stochastic chemical reactions.
Chemical reaction networks (CRNs) are fundamental computational models used to study the behavior of chemical reactions in well-mixed solutions. They have been used extensively to model a broad range of biological systems, and are primarily used when the more traditional model of deterministic continuous mass action kinetics is invalid due to small molecular counts. We present a perfect sampling algorithm to draw error-free samples from the stationary distributions of stochastic models for coupled, linear chemical reaction networks. The state spaces of such networks are given by all permissible combinations of molecular counts for each chemical species, and thereby grow exponentially with the numbers of species in the network. To avoid simulations involving large numbers of states, we propose a subset of chemical species such that coupling of paths started from these states guarantee coupling of paths started from all states in the state space and we show for the well-known Reversible Michaelis-Menten model that the subset does in fact guarantee perfect draws from the stationary distribution of interest. We compare solutions computed in two ways with this algorithm to those found analytically using the chemical master equation and we compare the distribution of coupling times for the two simulation approaches.