Do you want to publish a course? Click here

V-Formation via Model Predictive Control

78   0   0.0 ( 0 )
 Added by Vasudha Varadarajan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present recent results that demonstrate the power of viewing the problem of V-formation in a flock of birds as one of Model Predictive Control (MPC). The V-formation-MPC marriage can be understood in terms of the problem of synthesizing an optimal plan for a continuous-space and continuous-time Markov decision process (MDP), where the goal is to reach a target state that minimizes a given cost function. First, we consider ARES, an approximation algorithm for generating optimal plans (action sequences) that take an initial state of an MDP to a state whose cost is below a specified (convergence) threshold. ARES uses Particle Swarm Optimization, with adaptive sizing for both the receding horizon and the particle swarm. Inspired by Importance Splitting, the length of the horizon and the number of particles are chosen such that at least one particle reaches a next-level state. ARES can alternatively be viewed as a model-predictive control (MPC) algorithm that utilizes an adaptive receding horizon, aka Adaptive MPC (AMPC). We next present Distributed AMPC (DAMPC), a distributed version of AMPC that works with local neighborhoods. We introduce adaptive neighborhood resizing, whereby the neighborhood size is determined by the cost-based Lyapunov function evaluated over a global system state. Our experiments show that DAMPC can perform almost as well as centralized AMPC, while using only local information and a form of distributed consensus in each time step. Finally, inspired by security attacks on cyber-physical systems, we introduce controller-attacker games (CAG), where two players, a controller and an attacker, have antagonistic objectives. We formulate a special case of CAG called V-formation games, where the attackers goal is to prevent the controller from attaining V-formation. We demonstrate how adaptation in the design of the controller helps in overcoming certain attacks.



rate research

Read More

This paper proposes an off-line algorithm, called Recurrent Model Predictive Control (RMPC), to solve general nonlinear finite-horizon optimal control problems. Unlike traditional Model Predictive Control (MPC) algorithms, it can make full use of the current computing resources and adaptively select the longest model prediction horizon. Our algorithm employs a recurrent function to approximate the optimal policy, which maps the system states and reference values directly to the control inputs. The number of prediction steps is equal to the number of recurrent cycles of the learned policy function. With an arbitrary initial policy function, the proposed RMPC algorithm can converge to the optimal policy by directly minimizing the designed loss function. We further prove the convergence and optimality of the RMPC algorithm thorough Bellman optimality principle, and demonstrate its generality and efficiency using two numerical examples.
This paper proposes an off-line algorithm, called Recurrent Model Predictive Control (RMPC), to solve general nonlinear finite-horizon optimal control problems. Unlike traditional Model Predictive Control (MPC) algorithms, it can make full use of the current computing resources and adaptively select the longest model prediction horizon. Our algorithm employs a recurrent function to approximate the optimal policy, which maps the system states and reference values directly to the control inputs. The number of prediction steps is equal to the number of recurrent cycles of the learned policy function. With an arbitrary initial policy function, the proposed RMPC algorithm can converge to the optimal policy by directly minimizing the designed loss function. We further prove the convergence and optimality of the RMPC algorithm thorough Bellman optimality principle, and demonstrate its generality and efficiency using two numerical examples.
In this paper we present a Learning Model Predictive Control (LMPC) strategy for linear and nonlinear time optimal control problems. Our work builds on existing LMPC methodologies and it guarantees finite time convergence properties for the closed-loop system. We show how to construct a time varying safe set and terminal cost function using closed-loop data. The resulting LMPC policy is time varying and it guarantees recursive constraint satisfaction and non-decreasing performance. Computational efficiency is obtained by convexifing the safe set and terminal cost function. We demonstrate that, for a class of nonlinear system and convex constraints, the convex LMPC formulation guarantees recursive constraint satisfaction and non-decreasing performance. Finally, we illustrate the effectiveness of the proposed strategies on minimum time obstacle avoidance and racing examples.
203 - Ugo Rosolia , Aaron D. Ames 2021
In this paper, we present an iterative Model Predictive Control (MPC) design for piecewise nonlinear systems. We consider finite time control tasks where the goal of the controller is to steer the system from a starting configuration to a goal state while minimizing a cost function. First, we present an algorithm that leverages a feasible trajectory that completes the task to construct a control policy which guarantees that state and input constraints are recursively satisfied and that the closed-loop system reaches the goal state in finite time. Utilizing this construction, we present a policy iteration scheme that iteratively generates safe trajectories which have non-decreasing performance. Finally, we test the proposed strategy on a discretized Spring Loaded Inverted Pendulum (SLIP) model with massless legs. We show that our methodology is robust to changes in initial conditions and disturbances acting on the system. Furthermore, we demonstrate the effectiveness of our policy iteration algorithm in a minimum time control task.
77 - Tim Brudigam 2021
This brief introduction to Model Predictive Control specifically addresses stochastic Model Predictive Control, where probabilistic constraints are considered. A simple linear system subject to uncertainty serves as an example. The Matlab code for this stochastic Model Predictive Control example is available online.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا