Electron cascade for spin readout


Abstract in English

Electrons confined in semiconductor quantum dot arrays have both charge and spin degrees of freedom. The spin provides a well-controllable and long-lived qubit implementation. The charge configuration in the dot array is influenced by Coulomb repulsion, and the same interaction enables charge sensors to probe this configuration. Here we show that the Coulomb repulsion allows an initial charge transition to induce subsequent charge transitions, inducing a cascade of electron hops, like toppling dominoes. A cascade can transmit information along a quantum dot array over a distance that extends by far the effect of the direct Coulomb repulsion. We demonstrate that a cascade of electrons can be combined with Pauli spin blockade to read out spins using a remote charge sensor. We achieve > 99.9% spin readout fidelity in 1.7 $mathrm{mu}$s. The cascade-based readout enables operation of a densely-packed two-dimensional quantum dot array with charge sensors placed at the periphery. The high connectivity of such arrays greatly improves the capabilities of quantum dot systems for quantum computation and simulation.

Download