Do you want to publish a course? Click here

Evaporation Induced Rayleigh-Taylor Instabilities in Polymer Solutions

93   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding the mechanics of detrimental convective instabilities in drying polymer solutions is crucial in many applications such as the production of film coatings. It is well known that solvent evaporation in polymer solutions can lead to Rayleigh-Benard or Marangoni-type instabilities. Here we reveal another mechanism, namely that evaporation can cause the interface to display Rayleigh-Taylor instabilities due to the build-up of a dense layer at the air-liquid interface. We study experimentally the onset time ($t_p$) of the instability as a function of the macroscopic properties of aqueous polymer solutions, which we tune by varying the polymer concentration ($c_0$), molecular weight and polymer type. In dilute solutions, $t_p$ shows two limiting behaviors depending on the polymer diffusivity. For high diffusivity polymers (low molecular weight), the pluming time scales as $c_0^{-2/3}$. This result agrees with previous studies on gravitational instabilities in miscible systems where diffusion stabilizes the system. On the other hand, in low diffusivity polymers the pluming time scales as $c_0^{-1}$. The stabilizing effect of an effective interfacial tension, similar to those in immiscible systems, explains this strong concentration dependence. Above a critical concentration, $hat{c}$, viscosity delays the growth of the instability, allowing time for diffusion to act as the dominant stabilizing mechanism. This results in $t_p$ scaling as $( u/c_0)^{2/3}$.



rate research

Read More

363 - Ge Zhang , Aiguo Xu , Dejia Zhang 2019
Rayleigh-Taylor-instability(RTI) induced flow and mixing are of great importance in both nature and engineering scenarios. To capture the underpinning physics, tracers are introduced to make a supplement to discrete Boltzmann simulation of RTI in compressible flows. Via marking two types of tracers with different colors, the tracer distribution provides a clear boundary of two fluids during the RTI evolution. Fine structures of the flow and thermodynamic nonequilibrium behavior around the interface in a miscible two-fluid system are delineated. Distribution of tracers in its velocity phase space makes a charming pattern showing quite dense information on the flow behavior, which opens a new perspective for analyzing and accessing significantly deep insights into the flow system. RTI mixing is further investigated via tracer defined local mixedness. The appearance of Kelvin-Helmholtz instability is quantitatively captured by mixedness averaged align the direction of the pressure gradient. The role of compressibility and viscosity on mixing are investigated separately, both of which show two-stage effect. The underlying mechanism of the two-stage effect is interpreted as the development of large structures at the initial stage and the generation of small structures at the late stage. At the late stage, for a fixed time, a saturation phenomenon of viscosity is found that further increase of viscosity cannot see an evident decline in mixedness. The mixing statues of heavy and light fluids are not synchronous and the mixing of a RTI system is heterogenous. The results are helpful for understanding the mechanism of flow and mixing induced by RTI.
68 - A. Gaillard , R. Sijs , D. Bonn 2021
The effect of viscoelasticity on sprays produced from agricultural flat fan nozzles is investigated experimentally using dilute aqueous solutions of polyethylene oxide (PEO). Measurements of the droplet size distribution using laser diffraction reveal that polymer addition to water results in the formation of overall bigger droplets with a broader size distribution. The median droplet size $D_{50}$ is found to increase linearly with the extensional relaxation time of the liquid. The non-dimensional median droplet sizes of different polymer solutions, sprayed at different operating pressures from nozzles of different sizes, rescale on a single master curve when plotted against an empirical function of the Weber and Deborah numbers. Using high-speed photography of the spraying process, we show that the increase in droplet size with viscoelasticity can be partly attributed to an increase of the wavelength of the flapping motion responsible for the sheet breakup. We also show that droplet size distributions, rescaled by the average drop size, are well described by a compound gamma distribution with parameters $n$ and $m$ encoding for the ligament corrugation and the width of the ligament size distribution, respectively. These parameters are found to saturate to values $n=4$ and $m=4$ at high polymer concentrations.
The dynamics of a thin liquid film on the underside of a curved cylindrical substrate is studied. The evolution of the liquid layer is investigated as the film thickness and the radius of curvature of the substrate are varied. A dimensionless parameter (a modified Bond number) that incorporates both geometric parameters, gravity, and surface tension is identified, and allows the observations to be classified according to three different flow regimes: stable films, films with transient growth of perturbations followed by decay, and unstable films. Experiments and theory confirm that, below a critical value of the Bond number, curvature of the substrate suppresses the Rayleigh-Taylor instability.
Rayleigh--Taylor fluid turbulence through a bed of rigid, finite-size, spheres is investigated by means of high-resolution Direct Numerical Simulations (DNS), fully coupling the fluid and the solid phase via a state-of-the art Immersed Boundary Method (IBM). The porous character of the medium reveals a totally different physics for the mixing process when compared to the well-known phenomenology of classical RT mixing. For sufficiently small porosity, the growth-rate of the mixing layer is linear in time (instead of quadratical) and the velocity fluctuations tend to saturate to a constant value (instead of linearly growing). We propose an effective continuum model to fully explain these results where porosity originated by the finite-size spheres is parameterized by a friction coefficient.
We studied turbulence induced by the Rayleigh-Taylor (RT) instability for 2D immiscible two-component flows by using a multicomponent lattice Boltzmann method with a Shan-Chen pseudopotential implemented on GPUs. We compare our results with the extension to the 2D case of the phenomenological theory for immiscible 3D RT studied by Chertkov and collaborators ({it Physical Review E 71, 055301, 2005}). Furthermore, we compared the growth of the mixing layer, typical velocity, average density profiles and enstrophy with the equivalent case but for miscible two-component fluid. Both in the miscible and immiscible cases, the expected quadratic growth of the mixing layer and the linear growth of the typical velocity are observed with close long-time asymptotic prefactors but different initial transients. In the immiscible case, the enstrophy shows a tendency to grow like $propto t^{3/2}$, with the highest values of vorticity concentrated close to the interface. In addition, we investigate the evolution of the typical drop size and the behavior of the total length of the interface in the emulsion-like state, showing the existence of a power law behavior compatible with our phenomenological predictions. Our results can also be considered as a first validation step to extend the application of lattice Boltzmann tool to study the 3D immiscible case.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا