Do you want to publish a course? Click here

Determining the Neutrino Lifetime from Cosmology

104   0   0.0 ( 0 )
 Added by Peizhi Du
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the cosmological signals of theories in which the neutrinos decay into invisible dark radiation after becoming non-relativistic. We show that in this scenario, near-future large scale structure measurements from the Euclid satellite, when combined with cosmic microwave background data from Planck, may allow an independent determination of both the lifetime of the neutrinos and the sum of their masses. These parameters can be independently determined because the Euclid data will cover a range of redshifts, allowing the growth of structure over time to be tracked. If neutrinos are stable on cosmological timescales, these observations can improve the lower limit on the neutrino lifetime by seven orders of magnitude, from $mathcal{O}(10)$ years to $2times 10^8$ years ($95%$ C.L.), without significantly affecting the measurement of neutrino mass. On the other hand, if neutrinos decay after becoming non-relativistic but on timescales less than $mathcal{O}(100)$ million years, these observations may allow, not just the first measurement of the sum of neutrino masses, but also the determination of the neutrino lifetime from cosmology.



rate research

Read More

The combination of current large scale structure and cosmic microwave background (CMB) anisotropies data can place strong constraints on the sum of the neutrino masses. Here we show that future cosmic shear experiments, in combination with CMB constraints, can provide the statistical accuracy required to answer questions about differences in the mass of individual neutrino species. Allowing for the possibility that masses are non-degenerate we combine Fisher matrix forecasts for a weak lensing survey like Euclid with those for the forthcoming Planck experiment. Under the assumption that neutrino mass splitting is described by a normal hierarchy we find that the combination Planck and Euclid will possibly reach enough sensitivity to put a constraint on the mass of a single species. Using a Bayesian evidence calculation we find that such future experiments could provide strong evidence for either a normal or an inverted neutrino hierachy. Finally we show that if a particular neutrino hierachy is assumed then this could bias cosmological parameter constraints, for example the dark energy equation of state parameter, by > 1sigma, and the sum of masses by 2.3sigma.
490 - Steen Hannestad 2013
In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non-standard interactions, can also be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties.
Recent advances in cosmic observations have brought us to the verge of discovery of the absolute scale of neutrino masses. Nonzero neutrino masses are known evidence of new physics beyond the Standard Model. Our understanding of the clustering of matter in the presence of massive neutrinos has significantly improved over the past decade, yielding cosmological constraints that are tighter than any laboratory experiment, and which will improve significantly over the next decade, resulting in a guaranteed detection of the absolute neutrino mass scale.
The interplay between cosmology and earth based experiments is crucial in order to pin down neutrino physics. Indeed cosmology can provide very tight, yet model dependent, constraints on some neutrino properties. Here we focus on the neutrino mass sum, reviewing the up to date current bounds and showing the results of our forecast of the sensitivity of future experiments. Finally, we discuss the case for sterile neutrinos, explaining how non standard sterile neutrino self-interactions can reconcile the oscillation anomalies with cosmology.
357 - Steen Hannestad 2016
I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا