Do you want to publish a course? Click here

Quantum Coupon Collector

135   0   0.0 ( 0 )
 Added by Ronald de Wolf
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study how efficiently a $k$-element set $Ssubseteq[n]$ can be learned from a uniform superposition $|Srangle$ of its elements. One can think of $|Srangle=sum_{iin S}|irangle/sqrt{|S|}$ as the quantum version of a uniformly random sample over $S$, as in the classical analysis of the ``coupon collector problem. We show that if $k$ is close to $n$, then we can learn $S$ using asymptotically fewer quantum samples than random samples. In particular, if there are $n-k=O(1)$ missing elements then $O(k)$ copies of $|Srangle$ suffice, in contrast to the $Theta(klog k)$ random samples needed by a classical coupon collector. On the other hand, if $n-k=Omega(k)$, then $Omega(klog k)$ quantum samples are~necessary. More generally, we give tight bounds on the number of quantum samples needed for every $k$ and $n$, and we give efficient quantum learning algorithms. We also give tight bounds in the model where we can additionally reflect through $|Srangle$. Finally, we relate coupon collection to a known example separating proper and improper PAC learning that turns out to show no separation in the quantum case.



rate research

Read More

100 - J.C. Saunders 2020
Consider the coupon collector problem where each box of a brand of cereal contains a coupon and there are n different types of coupons. Suppose that the probability of a box containing a coupon of a specific type is $1/n$ and that we keep buying boxes until we collect at least $m$ coupons of each type. For $kgeq m$ call a certain coupon a $k$-ton if we see it $k$ times by the time we have seen $m$ copies of all of the coupons. Here we determine the asymptotic distribution of the number of $k$-tons after we have collected $m$ copies of each coupon for any $k$ in a restricted range, given any fixed $m$. We also determine the asymptotic joint probability distribution over such values of $k$ and the total number of coupons collected.
The Quantum Internet is envisioned as the final stage of the quantum revolution, opening fundamentally new communications and computing capabilities, including the distributed quantum computing. But the Quantum Internet is governed by the laws of quantum mechanics. Phenomena with no counterpart in classical networks, such as no-cloning, quantum measurement, entanglement and teleporting, impose very challenging constraints for the network design. Specifically, classical network functionalities, ranging from error-control mechanisms to overhead-control strategies, are based on the assumption that classical information can be safely read and copied. But this assumption does not hold in the Quantum Internet. As a consequence, the design of the Quantum Internet requires a major network-paradigm shift to harness the quantum mechanics specificities. The goal of this work is to shed light on the challenges and the open problems of the Quantum Internet design. To this aim, we first introduce some basic knowledge of quantum mechanics, needed to understand the differences between a classical and a quantum network. Then, we introduce quantum teleportation as the key strategy for transmitting quantum information without physically transferring the particle that stores the quantum information or violating the principles of the quantum mechanics. Finally, the key research challenges to design quantum communication networks are described.
Isomer search or molecule enumeration refers to the problem of finding all the isomers for a given molecule. Many classical search methods have been developed in order to tackle this problem. However, the availability of quantum computing architectures has given us the opportunity to address this problem with new (quantum) techniques. This paper describes a quantum isomer search procedure for determining all the structural isomers of alkanes. We first formulate the structural isomer search problem as a quadratic unconstrained binary optimization (QUBO) problem. The QUBO formulation is for general use on either annealing or gate-based quantum computers. We use the D-Wave quantum annealer to enumerate all structural isomers of all alkanes with fewer carbon atoms (n < 10) than Decane (C10H22). The number of isomer solutions increases with the number of carbon atoms. We find that the sampling time needed to identify all solutions scales linearly with the number of carbon atoms in the alkane. We probe the problem further by employing reverse annealing as well as a perturbed QUBO Hamiltonian and find that the combination of these two methods significantly reduces the number of samples required to find all isomers.
We extend the circuit model of quantum comuptation so that the wiring between gates is soft-coded within registers inside the gates. The addresses in these registers can be manipulated and put into superpositions. This aims at capturing indefinite causal orders, as well as making their geometrical layout explicit. We show how to implement the quantum switch and the polarizing beam splitter within our model. One difficulty is that the names used as addresses should not matter beyond the wiring they describe, i.e. the evolution should commute with renamings. Yet, the evolution may act nontrivially on these names. Our main technical contribution is a full characterization of such nameblind matrices.
Fault-tolerant quantum computation promises to solve outstanding problems in quantum chemistry within the next decade. Realizing this promise requires scalable tools that allow users to translate descriptions of electronic structure problems to optimized quantum gate sequences executed on physical hardware, without requiring specialized quantum computing knowledge. To this end, we present a quantum chemistry library, under the open-source MIT license, that implements and enables straightforward use of state-of-art quantum simulation algorithms. The library is implemented in Q#, a language designed to express quantum algorithms at scale, and interfaces with NWChem, a leading electronic structure package. We define a standardized schema for this interface, Broombridge, that describes second-quantized Hamiltonians, along with metadata required for effective quantum simulation, such as trial wavefunction ansatzes. This schema is generated for arbitrary molecules by NWChem, conveniently accessible, for instance, through Docker containers and a recently developed web interface EMSL Arrows. We illustrate use of the library with various examples, including ground- and excited-state calculations for LiH, H$_{10}$, and C$_{20}$ with an active-space simplification, and automatically obtain resource estimates for classically intractable examples.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا