Do you want to publish a course? Click here

Signatures of the two $K_1(1270)$ poles in $D^+to u e^+ V P$ decay

71   0   0.0 ( 0 )
 Added by Luis Roca
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We analyze theoretically the $D^+to u e^+ rho bar K$ and $D^+to u e^+ bar K^* pi$ decays to see the feasibility to check the double pole nature of the axial-vector resonance $K_1(1270)$ predicted by the unitary extensions of chiral perturbation theory (UChPT). Indeed, within UChPT the $K_1(1270)$ is dynamically generated from the interaction of a vector and a pseudoscalar meson, and two poles are obtained for the quantum numbers of this resonance. The lower mass pole couples dominantly to $K^*pi$ and the higher mass pole to $rho K$, therefore we can expect that different reactions weighing differently these channels in the production mechanisms enhance one or the other pole. We show that the different final $VP$ channels in $D^+to u e^+ V P$ weigh differently both poles, and this is reflected in the shape of the final vector-pseudoscalar invariant mass distributions. Therefore, we conclude that these decays are suitable to distinguish experimentally the predicted double pole of the $K_1(1270)$ resonance.



rate research

Read More

Using 2.93 fb$^{-1}$ of $e^+e^-$ collision data taken with the BESIII detector at a center-of-mass energy of 3.773 $rm ,GeV$, the observation of the $D^0to K_1(1270)^- e^+ u_e$ semileptonic decay is presented. The statistical significance of the decay $D^0to K_1(1270)^- e^+ u_e$ is greater than $10sigma$. The branching fraction of $D^0to K_1(1270)^- e^+ u_e$ is measured to be $(1.09pm0.13^{+0.09}_{-0.16} pm 0.12)times10^{-3}$. Here, the first uncertainty is statistical, the second is systematic, and the third originates from the assumed branching fraction of $K_1(1270)^- rightarrow K^-pi^+pi^-$. The fraction of longitudinal polarization in $D^0to K_1(1270)^- e^+ u_e$ is determined for the first time to be $0.50pm0.19_{rm stat}pm0.08_{rm syst}$.
156 - L. Roca , W. H. Liang , E. Oset 2021
We show, using the same Lagrangian for the $K_1(1270) to pi K^*_0(1430)$ and $K^*_0(1430) to K_1(1270) pi$ decays, that the present PDG data on the partial decay width of $K_1(1270) to pi K^*_0(1430)$ implies a width for $K^*_0(1430) to K_1(1270) pi$ decay which is about ten times larger than the total $K^*_0(1430)$ width. A discussion on this inconsistency is done, stressing its relationship to the existence of two $K_1(1270)$ states obtained with the chiral unitary theory, which are not considered in the experimental analyses of $Kpipi$ data.
We report a sensitive study of measuring $bto sgamma$ photon polarisation in $D^{0}to K_1(1270)^-e^+ u_e$ with an integrated luminosity of $mathcal L$ = 1 ab$^{-1}$ at a center-of-mass energy of 3.773 GeV at future Super Tau Charm Facility. More than 61,000 signals of $D^{0}to K_1(1270)^-e^+ u_e$ are expected. Based on a fast simulation software package, the statistical sensitivity for the ratio of up-down asymmetry is estimated to be $1.5times 10^{-2}$ by performing a two-dimensional angular analysis in $D^{0}to K_1(1270)^-e^+ u_e$. Combining with measurements of up-down asymmetry in $Bto K_1gamma$, the photon polarisation in $bto sgamma$ can be determined model-independently.
Using an electron-positron collision data sample of 2.93 fb$^{-1}$ collected at a center-of-mass energy of $sqrt{s}=3.773$ GeV with the BESIII detector, we present the first search for the radiative leptonic decay $D^{+} rightarrow gamma e^{+}{ u}_{e}$. The analysis is performed with a double tag method. We do not observe a significant $D^{+} rightarrow gamma e^{+}{ u}_{e}$ signal, and obtain an upper limit on the branching fraction of $D^{+} rightarrow gamma e^{+}{ u}_{e}$ decay with the energy of radiative photon larger than 10 MeV of $3.0times10^{-5}$ at the 90% confidence level.
We present the first search for the decay $D^+_{s}to omega e^{+} u$ to test the four-quark content of the $D^+_{s}$ and the $omega$-$phi$ mixing model for this decay. We use 586 $mathrm{pb}^{-1}$ of $e^{+}e^{-}$ collision data collected at a center-of-mass energy of 4170 MeV. We find no evidence of a signal, and set an upper limit on the branching fraction of $mathcal{B}(D^+_{s}toomega e^+ u)<$0.20% at the 90% confidence level.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا