Do you want to publish a course? Click here

Constructions of regular sparse anti-magic squares

50   0   0.0 ( 0 )
 Added by Guangzhou Chen
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Graph labeling is a well-known and intensively investigated problem in graph theory. Sparse anti-magic squares are useful in constructing vertex-magic labeling for graphs. For positive integers $n,d$ and $d<n$, an $ntimes n$ array $A$ based on ${0,1,cdots,nd}$ is called emph{a sparse anti-magic square of order $n$ with density $d$}, denoted by SAMS$(n,d)$, if each element of ${1,2,cdots,nd}$ occurs exactly one entry of $A$, and its row-sums, column-sums and two main diagonal sums constitute a set of $2n+2$ consecutive integers. An SAMS$(n,d)$ is called emph{regular} if there are exactly $d$ positive entries in each row, each column and each main diagonal. In this paper, we investigate the existence of regular sparse anti-magic squares of order $nequiv1,5pmod 6$, and it is proved that for any $nequiv1,5pmod 6$, there exists a regular SAMS$(n,d)$ if and only if $2leq dleq n-1$.



rate research

Read More

189 - Koji Momihara 2020
Davis and Jedwab (1997) established a great construction theory unifying many previously known constructions of difference sets, relative difference sets and divisible difference sets. They introduced the concept of building blocks, which played an important role in the theory. On the other hand, Polhill (2010) gave a construction of Paley type partial difference sets (conference graphs) based on a special system of building blocks, called a covering extended building set, and proved that there exists a Paley type partial difference set in an abelian group of order $9^iv^4$ for any odd positive integer $v>1$ and any $i=0,1$. His result covers all orders of nonelementary abelian groups in which Paley type partial difference sets exist. In this paper, we give new constructions of strongly regular Cayley graphs on abelian groups by extending the theory of building blocks. The constructions are large generalizations of Polhills construction. In particular, we show that for a positive integer $m$ and elementary abelian groups $G_i$, $i=1,2,ldots,s$, of order $q_i^4$ such that $2m,|,q_i+1$, there exists a decomposition of the complete graph on the abelian group $G=G_1times G_2times cdotstimes G_s$ by strongly regular Cayley graphs with negative Latin square type parameters $(u^2,c(u+1),- u+c^2+3 c,c^2+ c)$, where $u=q_1^2q_2^2cdots q_s^2$ and $c=(u-1)/m$. Such strongly regular decompositions were previously known only when $m=2$ or $G$ is a $p$-group. Moreover, we find one more new infinite family of decompositions of the complete graphs by Latin square type strongly regular Cayley graphs. Thus, we obtain many strongly regular graphs with new parameters.
We give a simple construction of an orthogonal basis for the space of m by n matrices with row and column sums equal to zero. This vector space corresponds to the affine space naturally associated with the Birkhoff polytope, contingency tables and Latin squares. We also provide orthogonal bases for the spaces underlying magic squares and Sudoku boards. Our construction combines the outer (i.e., tensor or dyadic) product on vectors with certain rooted, vector-labeled, binary trees. Our bases naturally respect the decomposition of a vector space into centrosymmetric and skew-centrosymmetric pieces; the bases can be easily modified to respect the usual matrix symmetry and skew-symmetry as well.
129 - Gennian Ge , Qing Xiang , Tao Yuan 2012
We give a construction of strongly regular Cayley graphs on finite fields $F_q$ by using union of cyclotomic classes and index 4 Gauss sums. In particular, we obtain two infinite families of strongly regular graphs with new parameters.
Hefetz, M{u}tze, and Schwartz conjectured that every connected undirected graph admits an antimagic orientation. In this paper we support the analogous question for distance magic labeling. Let $Gamma$ be an Abelian group of order $n$. A textit{directed $Gamma$-distance magic labeling} of an oriented graph $vec{G} = (V,A)$ of order $n$ is a bijection $vec{l}:V rightarrow Gamma$ with the property that there is a textit{magic constant} $mu in Gamma$ such that for every $x in V(G)$ $ w(x) = sum_{y in N^{+}(x)}vec{l}(y) - sum_{y in N^{-}(x)} vec{l}(y) = mu. $ In this paper we provide an infinite family of odd regular graphs possessing an orientable $mathbb{Z}_{n}$-distance magic labeling. Our results refer to lexicographic product of graphs. We also present a family of odd regular graphs that are not orientable $mathbb{Z}_{n}$-distance magic.
In this paper, we give a construction of strongly regular Cayley graphs and a construction of skew Hadamard difference sets. Both constructions are based on choosing cyclotomic classes in finite fields, and they generalize the constructions given by Feng and Xiang cite{FX111,FX113}. Three infinite families of strongly regular graphs with new parameters are obtained. The main tools that we employed are index 2 Gauss sums, instead of cyclotomic numbers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا