Do you want to publish a course? Click here

Lyapunov characterization of uniform exponential stability for nonlinear infinite-dimensional systems

78   0   0.0 ( 0 )
 Added by Mario Sigalotti
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we deal with infinite-dimensional nonlinear forward complete dynamical systems which are subject to external disturbances. We first extend the well-known Datko lemma to the framework of the considered class of systems. Thanks to this generalization, we provide characterizations of the uniform (with respect to disturbances) local, semi-global, and global exponential stability, through the existence of coercive and non-coercive Lyapunov functionals. The importance of the obtained results is underlined through some applications concerning 1) exponential stability of nonlinear retarded systems with piecewise constant delays, 2) exponential stability preservation under sampling for semilinear control switching systems, and 3) the link between input-to-state stability and exponential stability of semilinear switching systems.



rate research

Read More

We consider an abstract class of infinite-dimensional dynamical systems with inputs. For this class, the significance of noncoercive Lyapunov functions is analyzed. It is shown that the existence of such Lyapunov functions implies norm-to-integral input-to-state stability. This property in turn is equivalent to input-to-state stability if the system satisfies certain mild regularity assumptions. For a particular class of linear systems with unbounded admissible input operators, explicit constructions of noncoercive Lyapunov functions are provided. The theory is applied to a heat equation with Dirichlet boundary conditions.
This paper presents a novel scalable framework to solve the optimization of a nonlinear system with differential algebraic equation (DAE) constraints that enforce the asymptotic stability of the underlying dynamic model with respect to certain disturbances. Existing solution approaches to analogous DAE-constrained problems are based on discretization of DAE system into a large set of nonlinear algebraic equations representing the time-marching schemes. These approaches are not scalable to large size models. The proposed framework, based on LaSalles invariance principle, uses convex Lyapunov functions to develop a novel stability certificate which consists of a limited number of algebraic constraints. We develop specific algorithms for two major types of nonlinearities, namely Lure, and quasi-polynomial systems. Quadratic and convex-sum-of-square Lyapunov functions are constructed for the Lure-type and quasi-polynomial systems respectively. A numerical experiment is performed on a 3-generator power network to obtain a solution for transient-stability-constrained optimal power flow.
92 - Oran Gannot 2019
We discuss some frequency-domain criteria for the exponential stability of nonlinear feedback systems based on dissipativity theory. Applications are given to convergence rates for certain perturbations of the damped harmonic oscillator.
We propose a sampling-based approach to learn Lyapunov functions for a class of discrete-time autonomous hybrid systems that admit a mixed-integer representation. Such systems include autonomous piecewise affine systems, closed-loop dynamics of linear systems with model predictive controllers, piecewise affine/linear complementarity/mixed-logical dynamical system in feedback with a ReLU neural network controller, etc. The proposed method comprises an alternation between a learner and a verifier to find a valid Lyapunov function inside a convex set of Lyapunov function candidates. In each iteration, the learner uses a collection of state samples to select a Lyapunov function candidate through a convex program in the parameter space. The verifier then solves a mixed-integer quadratic program in the state space to either validate the proposed Lyapunov function candidate or reject it with a counterexample, i.e., a state where the Lyapunov condition fails. This counterexample is then added to the sample set of the learner to refine the set of Lyapunov function candidates. By designing the learner and the verifier according to the analytic center cutting-plane method from convex optimization, we show that when the set of Lyapunov functions is full-dimensional in the parameter space, our method finds a Lyapunov function in a finite number of steps. We demonstrate our stability analysis method on closed-loop MPC dynamical systems and a ReLU neural network controlled PWA system.
We study convergence of nonlinear systems in the presence of an `almost Lyapunov function which, unlike the classical Lyapunov function, is allowed to be nondecreasing---and even increasing---on a nontrivial subset of the phase space. Under the assumption that the vector field is free of singular points (away from the origin) and that the subset where the Lyapunov function does not decrease is sufficiently small, we prove that solutions approach a small neighborhood of the origin. A nontrivial example where this theorem applies is constructed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا