Do you want to publish a course? Click here

Two Component Jets of GRB160623A as Shocked Jet cocoon afterglow

146   0   0.0 ( 0 )
 Added by Yuji Urata
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two components of jets associated with the afterglow of the gamma-ray burst GRB 160623A were observed with multi-frequency observations including long-term monitoring in a sub-millimetre range (230 GHz) using the SMA. The observed light curves with temporal breaks suggests on the basis of the standard forward-shock synchrotron radiation model that the X-ray radiation is narrowly collimated with an opening angle $theta_{n,j}<sim6^{circ}$ whereas the radio radiation originated from wider jets ($sim27^{circ}$). The temporal and spectral evolutions of the radio afterglow agree with those expected from a synchrotron radiation modelling with typical physical parameters except for the fact that the observed wide jet opening angle for the radio emission is significantly larger than the theoretical maximum opening angle. By contrast, the opening angle of the X-ray afterglow is consistent with the typical value of GRB jets. Since the theory of the relativistic cocoon afterglow emission is similar to that of a regular afterglow with an opening angle of $sim30^{circ}$, the observed radio emission can be interpreted as the shocked jet cocoon emission. This result therefore indicates that the two components of the jets observed in the GRB 160623A afterglow is caused by the jet and the shocked jet cocoon afterglows.



rate research

Read More

Current observations have shown that astrophysical jets reveal strong signs of radial structure. They suggest that the inner region of the jet, the jet spine, consists of a low-density, fast-moving gas, while the outer region of the jet consists of a more dense and slower moving gas, called the jet sheath. Moreover, if jets carry angular momentum, the resultant centrifugal forces lead to a radial stratification. Current observations are not able to fully resolve the radial structure, so little is known about its actual profile. We present three AGN jet models in $2.5D$ of which two have been given a radial structure. The first model is a homogeneous jet, the only model that doesnt carry angular momentum; the second model is a spine-sheath jet with an isothermal equation of state; and the third jet model is a (piecewise) isochoric spine-sheath jet, with constant but different densities for jet spine and jet sheath. In this paper, we look at the effects of radial stratification on jet integrity, mixing between the different jet components and global morphology of the jet-head and surrounding cocoon.
The quick and precise localization of GRBs by the Swift telescope allows the early evolution of the afterglow light curve to be captured by ground-based telescopes. With GROND measurements we can investigate the optical/near-infrared light curve of the afterglow of gamma-ray burst 080413B in the context of late rebrightening. Multi-wavelength follow-up observations were performed on the afterglow of GRB 080413B. X-ray emission was detected by the X-ray telescope onboard the Swift satellite and obtained from the public archive. Optical and near-infrared photometry was performed with the seven-channel imager GROND mounted at the MPG/ESO 2.2 m telescope and additionally with the REM telescope, both in La Silla, Chile. The light curve model was constructed using the obtained broad-band data. The broad-band light curve of the afterglow of GRB 080413B is well fitted with an on-axis two-component jet model. The narrow ultra-relativistic jet is responsible for the initial decay, while the rise of the moderately relativistic wider jet near its deceleration time is the cause of the rebrightening of the light curve. The later evolution of the optical/NIR light curve is then dominated by the wide component, the signature of which is almost negligible in the X-ray wavelengths. These components have opening angles of theta(narrow) ~1.7 degrees and theta(wide) ~9 degrees, and Lorentz factors of Gamma(narrow) >188 and Gamma(wide) ~18.5. We calculated the beaming-corrected energy release to be 7.9 x 10^48 erg.
A number of gamma-ray bursts (GRBs) exhibit the late simultaneous bumps in their optical and Xray afterglows around the jet break. Its origin is unclear. Based on the following two facts, we suggest that this feature may sound a transition of circum-burst environment from a free-wind medium to a homogeneous medium. (I) The late bump followed by a steep decay is strongly reminiscent of the afterglows of GRB 170817A, which is attributed to an off-axis observed external-forward shock (eFS) propagating in an interstellar medium. (II) Observations seem to feature a long shallow decay before the late optical bump, which is different from the afterglow of GRB 170817A. In this paper, we study the emission of an eFS propagating in a free-to-shocked wind for on/off-axis observers, where the mass density in the shocked-wind is almost constant. The late simultaneous bumps/plateaux in the optical and X-ray afterglows are really found around the jet break for high-viewing-angle observers. Moreover, there is a long plateau or shallow decay before the late bump in the theoretical light-curves, which is formed during the eFS propagating in the free-wind. For low-viewing-angle observers, the above bumps appear only in the situation that the structured jet has a low characteristic angle and the deceleration radius of the on-axis jet flow is at around or beyond the free-wind boundary. As examples, the X-ray and optical afterglows of GRBs 120326A, 120404A, and 100814A are fitted. We find that an off-axis observed eFS in a free-to-shocked wind can well explain the afterglows in these bursts.
Several observations of astrophysical jets show evidence of a structure in the direction perpendicular to the jet axis, leading to the development of spine & sheath models of jets. Most studies focus on a two-component jet consisting of a highly relativistic inner jet and a slower - but still relativistic - outer jet surrounded by an unmagnetized environment. These jets are believed to be susceptible to a relativistic Rayleigh-Taylor-type instability, depending on the effective inertia ratio of the two components. We extend previous studies by taking into account the presence of a non-zero toroidal magnetic field. Different values of magnetization are examined, to detect possible differences in the evolution and stability of the jet. We find that the toroidal field, above a certain level of magnetization $sigma$, roughly equal to 0.01, can stabilize the jet against the previously mentioned instabilities and that there is a clear trend in the behaviour of the average Lorentz factor and the effective radius of the jet when we continuously increase the magnetization. The simulations are performed using the relativistic MHD module from the open source, parallel, grid adaptive, MPI-AMRVAC code.
This paper investigates GRB 050802, one of the best examples of a it Swift gamma-ray burst afterglow that shows a break in the X-ray lightcurve, while the optical counterpart decays as a single power-law. This burst has an optically bright afterglow of 16.5 magnitude, detected throughout the 170-650nm spectral range of the UVOT on-board Swift. Observations began with the XRT and UVOT telescopes 286s after the initial trigger and continued for 1.2 x 10^6s. The X-ray lightcurve consists of three power-law segments: a rise until 420s, followed by a slow decay with alpha_2 = 0.63 +/- 0.03 until 5000s, after which, the lightcurve decays faster with a slope of alpha_3 = 1.59 +/- 0.03. The optical lightcurve decays as a single power-law with alpha_O = 0.82 +/- 0.03 throughout the observation. The X-ray data on their own are consistent with the break at 5000s being due to the end of energy injection. Modelling the optical to X-ray spectral energy distribution, we find that the optical afterglow can not be produced by the same component as the X-ray emission at late times, ruling out a single component afterglow. We therefore considered two-component jet models and find that the X-ray and optical emission is best reproduced by a model in which both components are energy injected for the duration of the observed afterglow and the X-ray break at 5000s is due to a jet break in the narrow component. This bright, well-observed burst is likely a guide for interpreting the surprising finding of Swift that bursts seldom display achromatic jet breaks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا