Do you want to publish a course? Click here

Extrasolar planets: from dust to new worlds

66   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thousands of exoplanets have been discovered and the search for life outside Earth is at the forefront of astrophysical research. The planets we observe show a mind-blowing diversity that current theories strive to explain as part of the quest to assess the chances of finding life outside the Earth.



rate research

Read More

219 - J. Lazio 2009
The magnetospheric emissions from extrasolar planets represent a science frontier for the next decade. All of the solar system giant planets and the Earth produce radio emissions as a result of interactions between their magnetic fields and the solar wind. In the case of the Earth, its magnetic field may contribute to its habitability by protecting its atmosphere from solar wind erosion and by preventing energetic particles from reaching its surface. Indirect evidence for at least some extrasolar giant planets also having magnetic fields includes the modulation of emission lines of their host stars phased with the planetary orbits, likely due to interactions between the stellar and planetary magnetic fields. If magnetic fields are a generic property of giant planets, then extrasolar giant planets should emit at radio wavelengths allowing for their direct detection. Existing observations place limits comparable to the flux densities expected from the strongest emissions. Additional sensitivity at low radio frequencies coupled with algorithmic improvements likely will enable a new means of detection and characterization of extrasolar planets within the next decade.
311 - Caleb A. Scharf 2009
Terrestrial exoplanets are on the verge of joining the ranks of astronomically accessible objects. Interpreting their observable characteristics, and informing decisions on instrument design and use, will hinge on the ability to model these planets successfully across a vast range of configurations and climate forcings. A hierarchical approach that addresses fundamental behaviors as well as more complex, specific, situations is crucial to this endeavor and is presented here. Incorporating Earth-centric knowledge, and continued cross-disciplinary work will be critical, but ultimately the astrophysical study of terrestrial exoplanets must be encouraged to develop as its own field.
The search for habitable planets like Earth around other stars fulfils an ancient imperative to understand our origins and place in the cosmos. The past decade has seen the discovery of hundreds of planets, but nearly all are gas giants like Jupiter and Saturn. Recent advances in instrumentation and new missions are extending searches to planets the size of the Earth, but closer to their host stars. There are several possible ways such planets could form, and future observations will soon test those theories. Many of these planets we discover may be quite unlike Earth in their surface temperature and composition, but their study will nonetheless inform us about the process of planet formation and the frequency of Earth-like planets around other stars.
55 - R. Dvorak 2004
We investigate the stability regions of hypothetical terrestrial planets around the Lagrangian equilibrium points L4 and L5 in some specific extrasolar planetary systems. The problem of their stability can be treated in the framework of the restricted three body problem where the host star and a massive Jupiter-like planet are the primary bodies and the terrestrial planet is regarded as being massless. From these theoretical investigations one cannot determine the extension of the stable zones around the equilibrium points. Using numerical experiments we determined their largeness for three test systems chosen from the table of the know extrasolar planets, where a giant planet is moving close to the so-called habitable zone around the host star in low eccentric orbits. The results show the dependence of the size and structure of this region, which shrinks significantly with the eccentricity of the known gas giant.
In recent years it has been shown that the tidal coupling between extrasolar planets and their stars could be an important mechanism leading to orbital evolution. Both the tides the planet raises on the star and vice versa are important and dissipation efficiencies ranging over four orders of magnitude are being used. In addition, the discovery of extrasolar planets extremely close to their stars has made it clear that the estimates of the tidal quality factor, Q, of the stars based on Jupiter and its satellite system and on main sequence binary star observations are too low, resulting in lifetimes for the closest planets orders of magnitude smaller than their age. We argue that those estimates of the tidal dissipation efficiency are not applicable for stars with spin periods much longer than the extrasolar planets orbital period. We address the problem by applying our own values for the dissipation efficiency of tides, based on our numerical simulations of externally perturbed volumes of stellar-like convection. The range of dissipation we find for main-sequence stars corresponds to stellar $Q_*$ of $10^8$ to $3{times}10^9$. The derived orbit lifetimes are comparable to, or much longer than the ages of the observed extrasolar planetary systems. The predicted orbital decay transit timing variations due to the tidal coupling are below the rate of ms/yr for currently known systems, but within reach of an extended Kepler mission provided such objects are found in its field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا