No Arabic abstract
We consider revenue-optimal mechanism design in the interdimensional setting, where one dimension is the value of the buyer, and one is a type that captures some auxiliary information. One setting is the FedEx Problem, for which FGKK [2016] characterize the optimal mechanism for a single agent. We ask: how far can such characterizations go? In particular, we consider single-minded agents. A seller has heterogenous items. A buyer has a value v for a specific subset of items S, and obtains value v iff he gets (at least) all the items in S. We show: 1. Deterministic mechanisms are optimal for distributions that satisfy the declining marginal revenue (DMR) property; we give an explicit construction of the optimal mechanism. 2. Without DMR, the result depends on the structure of the directed acyclic graph (DAG) representing the partial order among types. When the DAG has out-degree at most 1, we characterize the optimal mechanism a la FedEx. 3. Without DMR, when the DAG has some node with out-degree at least 2, we show that in this case the menu complexity is unbounded: for any M, there exist distributions over (v,S) pairs such that the menu complexity of the optimal mechanism is at least M. 4. For the case of 3 types, we show that for all distributions there exists an optimal mechanism of finite menu complexity. This is in contrast to 2 additive heterogenous items or which the menu complexity could be uncountable [MV07; DDT15]. In addition, we prove that optimal mechanisms for Multi-Unit Pricing (without DMR) can have unbounded menu complexity. We also propose an extension where the menu complexity of optimal mechanisms can be countable but not uncountable. Together these results establish that optimal mechanisms in interdimensional settings are both much richer than single-dimensional settings, yet also vastly more structured than multi-dimensional settings.
Incentives are more likely to elicit desired outcomes when they are designed based on accurate models of agents strategic behavior. A growing literature, however, suggests that people do not quite behave like standard economic agents in a variety of environments, both online and offline. What consequences might such differences have for the optimal design of mechanisms in these environments? In this paper, we explore this question in the context of optimal contest design for simple agents---agents who strategically reason about whether or not to participate in a system, but not about the input they provide to it. Specifically, consider a contest where $n$ potential contestants with types $(q_i,c_i)$ each choose between participating and producing a submission of quality $q_i$ at cost $c_i$, versus not participating at all, to maximize their utilities. How should a principal distribute a total prize $V$ amongst the $n$ ranks to maximize some increasing function of the qualities of elicited submissions in a contest with such simple agents? We first solve the optimal contest design problem for settings with homogenous participation costs $c_i = c$. Here, the optimal contest is always a simple contest, awarding equal prizes to the top $j^*$ contestants for a suitable choice of $j^*$. (In comparable models with strategic effort choices, the optimal contest is either a winner-take-all contest or awards possibly unequal prizes, depending on the curvature of agents effort cost functions.) We next address the general case with heterogeneous costs where agents types are inherently two-dimensional, significantly complicating equilibrium analysis. Our main result here is that the winner-take-all contest is a 3-approximation of the optimal contest when the principals objective is to maximize the quality of the best elicited contribution.
Vehicular mobile crowd sensing is a fast-emerging paradigm to collect data about the environment by mounting sensors on vehicles such as taxis. An important problem in vehicular crowd sensing is to design payment mechanisms to incentivize drivers (agents) to collect data, with the overall goal of obtaining the maximum amount of data (across multiple vehicles) for a given budget. Past works on this problem consider a setting where each agent operates in isolation---an assumption which is frequently violated in practice. In this paper, we design an incentive mechanism to incentivize agents who can engage in arbitrary collusions. We then show that in a homogeneous setting, our mechanism is optimal, and can do as well as any mechanism which knows the agents preferences a priori. Moreover, if the agents are non-colluding, then our mechanism automatically does as well as any other non-colluding mechanism. We also show that our proposed mechanism has strong (and asymptotically optimal) guarantees for a more general heterogeneous setting. Experiments based on synthesized data and real-world data reveal gains of over 30% attained by our mechanism compared to past literature.
We describe a structured system for distributed mechanism design. It consists of a sequence of layers. The lower layers deal with the operations relevant for distributed computing only, while the upper layers are concerned only with communication among players, including broadcasting and multicasting, and distributed decision making. This yields a highly flexible distributed system whose specific applications are realized as instances of its top layer. This design supports fault-tolerance, prevents manipulations and makes it possible to implement distributed policing. The system is implemented in Java. We illustrate it by discussing a number of implemented examples.
In the standard Mechanism Design framework (Hurwicz-Reiter), there is a central authority that gathers agents messages and subsequently determines the allocation and tax for each agent. We consider a scenario where, due to communication overhead and other constraints, such broadcasting of messages to a central authority cannot take place. Instead, only local message exchange is allowed between agents. As a result, each agent should be able to determine her own allocation and tax based on the messages in the local neighborhood, as defined by a given message graph describing the communication constraints. This scenario gives rise to a novel research direction that we call Distributed Mechanism Design. In this paper, we propose such a distributed mechanism for the problem of rate allocation in a multicast transmission network. The proposed mechanism fully implements the optimal allocation in Nash equilibria and its message space dimension is linear with respect to the number of agents in the network.
Game theory is often used as a tool to analyze decentralized systems and their properties, in particular, blockchains. In this note, we take the opposite view. We argue that blockchains can and should be used to implement economic mechanisms because they can help to overcome problems that occur if trust in the mechanism designer cannot be assumed. Mechanism design deals with the allocation of resources to agents, often by extracting private information from them. Some mechanisms are immune to early information disclosure, while others may heavily depend on it. Some mechanisms have to randomize to achieve fairness and efficiency. Both issues, information disclosure, and randomness require trust in the mechanism designer. If there is no trust, mechanisms can be manipulated. We claim that mechanisms that use randomness or sequential information disclosure are much harder, if not impossible, to audit. Therefore, centralized implementation is often not a good solution. We consider some of the most frequently used mechanisms in practice and identify circumstances under which manipulation is possible. We propose a decentralized implementation of such mechanisms, that can be, in practical terms, realized by blockchain technology. Moreover, we argue in which environments a decentralized implementation of a mechanism brings a significant advantage.