Do you want to publish a course? Click here

Low-frequency broadband acoustic metasurface absorbing panels

138   0   0.0 ( 0 )
 Added by Jun Ji
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A broadband sound absorption attained by a deep-subwavelength structure is of great interest to the noise control community especially for extremely low frequencies (20-100 Hz) in room acoustics. Coupling multiple different resonant unit cells has been an effective strategy to achieve a broadband sound absorption. In this paper, we report on an analytical, numerical and experimental study of a low-frequency broadband (50-63 Hz, one third octave band), high absorption (average absorption coefficient around 93%), near-omnidirectional (0{deg}-75{deg}) acoustic metasurface absorber composed of 4 coupled unit cells at a thickness of 15.4 cm (1/45 of the wavelength at 50 Hz). The absorption by such a deep-subwavelength structure occurs due to a strong coupling between unit cells, which is realized by carefully engineering geometric parameters of each unit cell, especially the judicious assignment of lateral size to each unit cell. To further broaden the bandwidth (50-100 Hz, one octave band), a design with 19 unit cells coupled in a supercell is analytically studied to achieve an average absorption coefficient of 85% for a wide angle range (0{deg}-75{deg}) at a thickness of 20 cm (1/34 of wavelength at 50 Hz). Two additional degrees of freedom, the lateral size of supercell and the number of unit cells in the supercell, are demonstrated to facilitate such a causally optimal design which is close to the ideally causal optimality. The proposed design methodology may solve the long-standing issue for low frequency absorption in room acoustics.



rate research

Read More

We introduce a multi-coiled acoustic metasurface providing a quasi-perfect absorption (reaching 99.99% in experiments) at extremely low-frequency of 50 Hz, and simultaneously featuring an ultrathin thickness down to {lambda}/527 (1.3 cm). In contrast to the state of the art, this original conceived multi-coiled metasurface offers additional degrees of freedom capable to tune the acoustic impedance effectively without increasing the total thickness. We provide analytical derivation, numerical simulation and experimental demonstrations for this unique absorber concept, and discuss its physical mechanism which breaks the quarter-wavelength resonator theory. Furthermore, based on the same conceptual approach, we propose a broadband lowfrequency metasurface absorber by coupling unit cells exhibiting different properties.
We theoretically and experimentally propose two designs of broadband low-frequency acoustic metasurface absorbers (Sample I/Sample II) for the frequency ranges of 458Hz~968Hz and 231Hz~491Hz (larger than 1 octave), with absorption larger than 0.8, and having the ultra-thin thickness of 5.2cm and 10.4cm respectively ({lambda}/15 for the lowest working frequency and {lambda}/7.5 for the highest frequency). The designed supercell consists of 16 different unit cells corresponding to 16 eigen frequencies for resonant absorptions. The coupling of multiple resonances leads to broadband absorption effect in the full range of the targeted frequency spectrum. In particular, we propose to combine gradient-change channel and coiled structure to achieve simultaneous impedance matching and minimal occupied space, leading to the ultra-thin thickness of the metasurface absorbers. Our conceived ultra-thin low-frequency broadband absorbers may lead to pragmatic implementations and applications in noise control field.
77 - Shubo Wang , Bo Hou , 2018
We propose to use logarithmic spiral resonators for efficient absorption of microwaves. By combining their scale invariant geometries and Fabry-Perot-type resonances stemming from the fundamental TM mode, we realize a microwave metasurface with broadband absorption performance. The metasurface comprises logarithmic spiral resonators backed with a metallic surface and it can absorb >95% of incident microwave energy within the frequency range of 6 GHz - 37 GHz. We discuss the physics underlying the broadband absorption and the crucial role of vortex energy flow. The study opens a new direction of electromagnetic wave absorption by employing the scale invariance of Maxwell equations.
Previous research has attempted to minimize the influence of loss in reflection- and transmission-type acoustic metasurfaces. This letter shows that, by treating the acoustic metasurface as a non-Hermitian system and by harnessing loss, unconventional wave behaviors that do not exist in lossless metasurfaces can be uncovered. Specifically, we theoretically and experimentally demonstrate a non-Hermitian acoustic metasurface mirror featuring extremely asymmetrical reflection at the exception point. As an example, the metasurface mirror is designed to have high-efficiency retro-reflection when the wave incidents from one side and complete absorption when the wave incidents from the other side. This work marries conventional gradient index metasurfaces with the exception point from non-Hermitian systems, and paves the way for identifying new mechanisms and functionalities for wave manipulation.
91 - Haozhen Zou , Pan Li , 2019
This paper describes a new kind of acoustic metasurface with multiply resonant units, which have previously been used to induce multiple resonances and effectively produce negative mass density and bulk/shear moduli. The proposed acoustic metasurface can be constructed using real materials and does not rely on an ideal rigid material. Therefore, it can work well in a water background. The thickness of the acoustic metasurface is about two orders of magnitude smaller than the acoustic wavelength in water. The design of a unit group is proposed to avoid the phase discretization becoming too fine in such a long-wavelength condition. We demonstrate that the proposed acoustic metasurface achieves good performance in anomalous reflection, focusing, and carpet cloaking.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا