Federated Learning allows remote centralized server training models without to access the data stored in distributed (edge) devices. Most work assume the data generated from edge devices is identically and independently sampled from a common population distribution. However, such ideal sampling may not be realistic in many contexts where edge devices correspond to units in variable context. Also, models based on intrinsic agency, such as active sampling schemes, may lead to highly biased sampling. So an imminent question is how robust Federated Learning is to biased sampling? In this work, we investigate two such scenarios. First, we study Federated Learning of a classifier from data with edge device class distribution heterogeneity. Second, we study Federated Learning of a classifier with active sampling at the edge. We present evidence in both scenarios, that federated learning is robust to data heterogeneity.