Natural Top-Bottom Mass Hierarchy in Composite Higgs Models


Abstract in English

We consider composite two-Higgs doublet models based on gauge-Yukawa theories with strongly interacting fermions generating the top-bottom mass hierarchy. The model features a single universal Higgs-Yukawa coupling, $ g $, which is identified with the top quark $ gequiv g_t sim mathcal{O}(1) $. The top-bottom mass hierarchy arises by soft breaking of a $ mathbb{Z}_2 $ symmetry by a condensate of strongly interacting fermions. A mass splitting between vector-like masses of the confined techni-fermions controls this top-bottom mass hierarchy. This mechanism can be present in a variety of models based on vacuum misalignment. For concreteness, we demonstrate it in a composite two-Higgs scheme.

Download