Do you want to publish a course? Click here

Temporal Evolution of the Inverse Evershed Flow

76   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The inverse Evershed flow (IEF) is an inflow of material into the penumbra of sunspots in the solar chromosphere that occurs along dark, elongated superpenumbral fibrils extending from about the outer edge of the moat cell to the sunspot. The IEF channels exhibit brightenings in the penumbra, where the supersonic IEF descends to the photosphere causing shock fronts with localized heating. We used an 1-hr time-series of spectroscopic observations of the chromospheric spectral lines of CaIIIR at 854nm and H$alpha$ at 656nm taken with IBIS at the DST to investigate the temporal evolution of IEF channels. Complementary information on the photospheric magnetic field was obtained from observations with FIRS at 1083 m and HMI. We find that individual IEF channels are long-lived (10-60min) and only show minor changes in position and flow speed during their life time. Initiation and termination of IEF channels takes several minutes. The IEF channels with line-of-sight velocities of about 10km/s show no lasting impact from transient or oscillatory phenomena with maximal velocity amplitudes of only about 1km/s that run along them. We could not detect any clear correlation of the location and evolution of IEF channels to local magnetic field properties in the photosphere in the penumbra or moving magnetic features in the sunspot moat. Our results support a picture of the IEF as a field-aligned siphon flow along arched loops. From our data we cannot determine if their evolution is controlled by events at the outer end in the moat or at the inner end in the penumbra.



rate research

Read More

We present the properties of the inverse Evershed flow (IEF) based on the center-to-limb variation of the plasma speed and loop geometry of chromospheric superpenumbral fibrils in eleven sunspots that were located at a wide range of heliocentric angles from 12 to 79 deg. The observations were acquired at the Dunn Solar Telescope in the spectral lines of Halpha at 656nm, CaII IR at 854 nm and HeI at 1083 nm. All sunspots display opposite line-of-sight (LOS) velocities on the limb and center side with a distinct shock signature near the outer penumbral edge. We developed a simplified flexible sunspot model assuming axisymmetry and prescribing the radial flow speed profile at a known loop geometry to replicate the observed two-dimensional IEF patterns under different viewing angles. The simulated flow maps match the observations for chromospheric loops with 10-20 Mm length starting at 0.8-1.1 sunspot radii, an apex height of 2-3Mm and a true constant flow speed of 2-9km/s. We find on average a good agreement of the simulated velocities and the observations on elliptical annuli around the sunspot. Individual IEF channels show a significant range of variation in their properties and reach maximal LOS speeds of up to 12km/s. Upwards or downwards directed flows do not show a change of sign in the LOS velocities for heliocentric angles above 30 deg. Our results are consistent with the IEF being caused by a siphon flow mechanism driving a flow at a constant sonic speed along elevated loops with a flattened top in the chromosphere.
We studied the variations of line-of-sight photospheric plasma flows during the formation phase of the penumbra around a pore in Active Region NOAA 11490. We used a high spatial, spectral, and temporal resolution data set acquired by the Interferometric BIdimensional Spectrometer (IBIS) operating at the NSO/Dunn Solar Telescope as well as data taken by the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory satellite (SDO/HMI). Before the penumbra formed we observed a redshift of the spectral line in the inner part of the annular zone surrounding the pore as well as a blueshift of material associated with opposite magnetic polarity further away from the pore. We found that the onset of the classical Evershed flow occurs in a very short time scale -- 1-3 hours -- while the penumbra is forming. During the same time interval we found changes in the magnetic field inclination in the penumbra, with the vertical field actually changing sign near the penumbral edge, while the total magnetic field showed a significant increase, about 400 G. To explain these and other observations related to the formation of the penumbra and the onset of the Evershed flow we propose a scenario in which the penumbra is formed by magnetic flux dragged down from the canopy surrounding the initial pore. The Evershed flow starts when the sinking magnetic field dips below the solar surface and magnetoconvection sets in.
Using Hinode SP and G-band observations, we examined the relationship between magnetic field structure and penumbral size as well as Evershed flow speed. The latter two are positively correlated with magnetic inclination angle or horizontal field strength within 1.5 kilogauss, which is in agreement with recent magnetoconvective simulations of Evershed effect. This work thus provides direct observational evidence supporting the magnetoconvection nature of penumbral structure and Evershed flow in the presence of strong and inclined magnetic field.
Aims. We analyse SUMER spectral scans of a large sunspot within active region NOAA 10923, obtained on 14-15 November 2006, to determine the morphology and dynamics of the sunspot atmosphere at different heights/temperatures. Methods: The data analysed here consist of spectroheliograms in the continuum around 142.0 nm and in the Si iv 140.2 nm, O iii 70.3 nm, N iv 76.5 nm, and O iv 79.0 nm spectral lines. Gaussian-fitting of the observed profiles provides line-of-sight velocity and Doppler-width maps. Results: The data show an asymmetric downflow pattern compatible with the presence of the inverse Evershed flow in a region within roughly twice the penumbral radius at transition-region temperatures up to 0.18 MK. The motions, highly inhomogeneous on small scales, seem to occur in a collar of radially directed filamentary structures, with an average width less than the 1 Mm spatial resolution of SUMER and characterised by different plasma speeds. Assuming that the flows are directed along the field lines, we deduce that such field lines are inclined by 10 deg to 25 deg with respect to the solar surface.
The amplitudes of the Evershed flow are measured using pairs of carefully selected FeI and FeII spectral lines located close in wavelength and registered simultaneously. A sunspot belonging to the NOAA 11582 group was scanned using the spectrograph of the German Vacuum Tower Telescope (Observatorio del Teide, Tenerife). Velocities were extracted from intensity profiles using the lambda-meter technique. The formation heights of the observed spectral lines were calculated using semi-empirical models of a bright and dark penumbral filament taking into account the sunspot location at the limb. Our objective is to compare azimuthally averaged amplitudes of the Evershed flow extracted from neutral and ion lines. We find measurable differences in the radial component of the flow. All five pairs of lines show the same tendency, with a few hundred m/s larger amplitude of the flow measured from FeI lines compared to FeII lines. This tendency is preserved at all photospheric heights and radial distances in the penumbra. We discuss the possible origin of this effect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا