Do you want to publish a course? Click here

A detailed study on the reflection component for the Black Hole Candidate MAXI J1836-194

85   0   0.0 ( 0 )
 Added by Yanting Dong
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a detailed spectral analysis of the black hole candidate MAXI J1836-194. The source was caught in the intermediate state during its 2011 outburst by Suzaku and RXTE. We jointly fit the X-ray data from these two missions using the relxill model to study the reflection component, and a steep inner emissivity profile indicating a compact corona as the primary source is required in order to achieve a good fit. In addition, a reflection model with a lamp-post configuration (relxilllp), which is normally invoked to explain the steep emissivity profile, gives a worse fit and is excluded at 99% confidence level compared to relxill. We also explore the effect of the ionization gradient on the emissivity profile by fitting the data with two relativistic reflection components, and it is found that the inner emissivity flattens. These results may indicate that the ionization state of the disc is not constant. All the models above require a supersolar iron abundance higher than 4.5. However, we find that the high-density version of reflionx can describe the same spectra even with solar iron abundance well. A moderate rotating black hole (a* = 0.84-0.94) is consistently obtained by our models, which is in agreement with previously reported values.



rate research

Read More

The X-ray transient MAXI J1836-194 is a newly-identified Galactic black hole binary candidate. As most X-ray transients, it was discovered at the beginning of an X-ray outburst. After the initial canonical X-ray hard state, the outburst evolved into a hard intermediate state and then went back to the hard state. The existing RATAN-600 radio monitoring observations revealed that it was variable on a timescale of days and had a flat or inverted spectrum, consistent with optically thick synchrotron emission, possibly from a self-absorbed jet in the vicinity of the central compact object. We observed the transient in the hard state near the end of the X-ray outburst with the European VLBI Network (EVN) at 5 GHz and the Chinese VLBI Network (CVN) at 2.3 and 8.3 GHz. The 8.3 GHz observations were carried out at a recording rate of 2048 Mbps using the newly-developed Chinese VLBI data acquisition system (CDAS), twice higher than the recording rate used in the other observations. We successfully detected the low-declination source with a high confidence level in both observations. The source was unresolved (<=0.5 mas), which is in agreement with an AU-scale compact jet.
115 - T. D. Russell 2013
We present the results of our quasi-simultaneous radio, sub-mm, infrared, optical and X-ray study of the Galactic black hole candidate X-ray binary MAXI J1836-194 during its 2011 outburst. We consider the full multi-wavelength spectral evolution of the outburst, investigating whether the evolution of the jet spectral break (the transition between optically-thick and optically-thin synchrotron emission) is caused by any specific properties of the accretion flow. Our observations show that the break does not scale with the X-ray luminosity or with the inner radius of the accretion disk, and is instead likely to be set by much more complex processes. We find that the radius of the acceleration zone at the base of the jet decreases from ~10$^6$ gravitational radii during the hard intermediate state to ~10$^3$ gravitational radii as the outburst fades (assuming a black hole mass of 8 M$_{odot}$), demonstrating that the electrons are accelerated on much larger scales than the radius of the inner accretion disk and that the jet properties change significantly during outburst. From our broadband modelling and high-resolution optical spectra, we argue that early in the outburst, the high-energy synchrotron cooling break was located in the optical band, between $approx 3.2 times 10^{14}$ Hz and $4.5 times 10^{14}$ Hz. We calculate that the jet has a total radiative power of $approx 3.1 times 10^{36}$ ergs s$^{-1}$, which is ~6% of the bolometric radiative luminosity at this time. We discuss how this cooling break may evolve during the outburst, and how that evolution dictates the total jet radiative power. Assuming the source is a stellar-mass black hole with canonical state transitions, from the measured flux and peak temperature of the disk component we constrain the source distance to be 4-10 kpc.
632 - T. D. Russell 2013
We present Very Large Telescope optical spectra of the black hole candidate X-ray binary MAXI J1836-194 at the onset of its 2011 outburst. Although the spectrum was taken at the beginning of the outburst and contains a significant contribution from the optically-thin synchrotron emission that originates in the radio jet, we find that the accretion disk was already large and bright. Single-peaked, narrow H$alpha$ and He II $lambda$4686 lines imply the most face-on accretion disk observed in a black hole low-mass X-ray binary to date, with an inclination angle between 4$^{circ}$ and 15$^{circ}$, assuming a black hole mass of between 5 M$_odot$ and 12 M$_odot$, for distances of between 4 and 10 kpc. We use New Technology Telescope observations of the system in quiescence to place strong upper limits on the mass and radius of the donor star and the orbital period. The donor is a main sequence star with a mass < 0.65 M$_{odot}$ and a radius < 0.59 R$_{odot}$ with an orbital period of < 4.9 hours. From those values and Roche lobe geometry constraints we find that the compact object must be >1.9 M$_{odot}$ if the system is located 4 kpc away and >7.0 M$_{odot}$ at 10 kpc.
We report striking changes in the broadband spectrum of the compact jet of the black hole transient MAXI J1836-194 over state transitions during its discovery outburst in 2011. A fading of the optical-infrared (IR) flux occurred as the source entered the hard-intermediate state, followed by a brightening as it returned to the hard state. The optical-IR spectrum was consistent with a power law from optically thin synchrotron emission, except when the X-ray spectrum was softest. By fitting the radio to optical spectra with a broken power law, we constrain the frequency and flux of the optically thick/thin break in the jet synchrotron spectrum. The break gradually shifted to higher frequencies as the source hardened at X-ray energies, from ~ 10^11 to ~ 4 x 10^13 Hz. The radiative jet luminosity integrated over the spectrum appeared to be greatest when the source entered the hard state during the outburst decay (although this is dependent on the high energy cooling break, which is not seen directly), even though the radio flux was fading at the time. The physical process responsible for suppressing and reactivating the jet (neither of which are instantaneous but occur on timescales of weeks) is uncertain, but could arise from the varying inner accretion disk radius regulating the fraction of accreting matter that is channeled into the jet. This provides an unprecedented insight into the connection between inflow and outflow, and has implications for the conditions required for jets to be produced, and hence their launching process.
We present the first results on the new black hole candidate, MAXI J1305-704, observed by MAXI/GSC. The new X-ray transient, named as MAXI J1305-704, was first detected by the MAXI-GSC all-sky survey on 2012 April 9 in the direction to the outer Galactic bulge at (l,b)=(304.2deg,-7.6deg). The Swift/XRT follow-up observation confirmed the uncatalogued point source and localized to the position at (13h06m56s.44,-70d274.91). The source continued the activity for about five months until 2012 August. The MAXI/GSC light curve in the 2--10 keV band and the variation of the hardness ratio of the 4-10 keV to the 2-4 keV flux revealed the hard-to-soft state transition on the the sixth day (April 15) in the brightening phase and the soft-to-hard transition on the ~60th day (June 15) in the decay phase. The luminosity at the initial hard-to-soft transition was significantly higher than that at the soft-to-hard transition in the decay phase. The X-ray spectra in the hard state are represented by a single power-law model with a photon index of ~2.0, while those in the soft state need such an additional soft component as represented by a multi-color disk blackbody emission with an inner disk temperature ~0.5--1.2 keV. All the obtained features support the source identification of a Galactic black-hole binary located in the Galactic bulge.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا