Superconductivity without insulating states in twisted bilayer graphene stabilized by monolayer WSe$_2$


Abstract in English

Magic-angle twisted bilayer graphene (TBG), with rotational misalignment close to 1.1$^circ$, features isolated flat electronic bands that host a rich phase diagram of correlated insulating, superconducting, ferromagnetic, and topological phases. The origins of the correlated insulators and superconductivity, and the interplay between them, are particularly elusive. Both states have been previously observed only for angles within $pm0.1^circ$ from the magic-angle value and occur in adjacent or overlapping electron density ranges; nevertheless, it is still unclear how the two states are related. Beyond the twist angle and strain, the dependence of the TBG phase diagram on the alignment and thickness of insulating hexagonal boron nitride (hBN) used to encapsulate the graphene sheets indicates the importance of the microscopic dielectric environment. Here we show that adding an insulating tungsten-diselenide (WSe$_2$) monolayer between hBN and TBG stabilizes superconductivity at twist angles much smaller than the established magic-angle value. For the smallest angle of $theta$ = 0.79$^circ$, we still observe clear superconducting signatures, despite the complete absence of the correlated insulating states and vanishing gaps between the dispersive and flat bands. These observations demonstrate that, even though electron correlations may be important, superconductivity in TBG can exist even when TBG exhibits metallic behaviour across the whole range of electron density. Finite-magnetic-field measurements further reveal breaking of the four-fold spin-valley symmetry in the system, consistent with large spin-orbit coupling induced in TBG via proximity to WSe$_2$. Our results highlight the importance of symmetry breaking effects in stabilizing electronic states in TBG and open new avenues for engineering quantum phases in moire systems.

Download