Do you want to publish a course? Click here

Interpreting the Spitzer/IRAC Colours of 7<z<9 Galaxies: Distinguishing Between Line Emission and Starlight Using ALMA

115   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Prior to the launch of JWST, Spitzer/IRAC photometry offers the only means of studying the rest-frame optical properties of z>7 galaxies. Many such high redshift galaxies display a red [3.6] - [4.5] micron colour, often referred to as the IRAC excess, which has conventionally been interpreted as arising from intense [OIII]+Hbeta emission within the [4.5] micron bandpass. An appealing aspect of this interpretation is similarly intense line emission seen in star-forming galaxies at lower redshift as well as the redshift-dependent behaviour of the IRAC colours beyond z~7 modelled as the various nebular lines move through the two bandpasses. In this paper we demonstrate that, given the photometric uncertainties, established stellar populations with Balmer (4000 A, rest-frame) breaks, such as those inferred at z>9 where line emission does not contaminate the IRAC bands, can equally well explain the redshift-dependent behaviour of the IRAC colours in 7<z<9 galaxies. We discuss possible ways of distinguishing between the two hypotheses using ALMA measures of [OIII] 88 micron and dust continuum fluxes. Prior to further studies with JWST, we show that the distinction is important in determining the assembly history of galaxies in the first 500 Myr.



rate research

Read More

We identify 4 unusually bright (H < 25.5) galaxies from HST and Spitzer CANDELS data with probable redshifts z ~ 7-9. These identifications include the brightest-known galaxies to date at z > 7.5. As Y-band observations are not available over the full CANDELS program to perform a standard Lyman-break selection of z > 7 galaxies, we employ an alternate strategy using deep Spitzer/IRAC data. We identify z ~ 7.1 - 9.1 galaxies by selecting z >~ 6 galaxies from the HST CANDELS data that show quite red IRAC [3.6]-[4.5] colors, indicating strong [OIII]+Hbeta lines in the 4.5 micron band. This selection strategy was validated using a modest sample for which we have deep Y-band coverage, and subsequently used to select the brightest z > 7 sources. Applying the IRAC criteria to all HST-selected optical-dropout galaxies over the full ~900 arcmin**2 of the CANDELS survey revealed four unusually bright z ~ 7.1, 7.6, 7.9 and 8.6 candidates. The median [3.6]-[4.5] color of our selected z ~ 7.1-9.1 sample is consistent with rest-frame [OIII]+Hbeta EWs of ~1500A, in the [4.5] band. Keck/MOSFIRE spectroscopy has been independently reported for two of our selected sources, showing Ly-alpha at redshifts of 7.7302+/-0.0006 and 8.683^+0.001_-0.004, respectively. We present similar Keck/MOSFIRE spectroscopy for a third selected galaxy with a probable 4.7sigma Ly-alpha line at z_spec=7.4770+/-0.0008. All three have H-band magnitudes of ~25 mag and are ~0.5 mag more luminous (M(UV) ~ -22.0) than any previously discovered z ~ 8 galaxy, with important implications for the UV LF. Our 3 brightest, highest redshift z > 7 galaxies all lie within the CANDELS EGS field, providing a dramatic illustration of the potential impact of field-to-field variance.
High-redshift submillimetre-bright galaxies identified by blank field surveys at millimetre and submillimetre wavelengths appear in the region of the IRAC colour-colour diagrams previously identified as the domain of luminous active galactic nuclei (AGNs). Our analysis using a set of empirical and theoretical dusty starburst spectral energy distribution (SED) models shows that power-law continuum sources associated with hot dust heated by young (<100 Myr old), extreme starbursts at z>2 also occupy the same general area as AGNs in the IRAC colour-colour plots. A detailed comparison of the IRAC colours and SEDs demonstrates that the two populations are distinct from each other, with submillimetre-bright galaxies having a systematically flatter IRAC spectrum (>1 mag bluer in the observed [4.5]-[8.0] colour). Only about 20% of the objects overlap in the colour-colour plots, and this low fraction suggests that submillimetre galaxies powered by a dust-obscured AGN are not common. The red IR colours of the submillimetre galaxies are distinct from those of the ubiquitous foreground IRAC sources, and we propose a set of IR colour selection criteria for identifying SMG counterparts that can be used even in the absence of radio or Spitzer MIPS 24 micron data.
We present new results on [CII]158$mu$ m emission from four galaxies in the reionization epoch. These galaxies were previously confirmed to be at redshifts between 6.6 and 7.15 from the presence of the Ly$alpha$ emission line in their spectra. The Ly$alpha$ emission line is redshifted by 100-200 km/s compared to the systemic redshift given by the [CII] line. These velocity offsets are smaller than what is observed in z~3 Lyman break galaxies with similar UV luminosities and emission line properties. Smaller velocity shifts reduce the visibility of Ly$alpha$ and hence somewhat alleviate the need for a very neutral IGM at z~7 to explain the drop in the fraction of Ly$alpha$ emitters observed at this epoch. The galaxies show [CII] emission with L[CII]=0.6-1.6 x10$^8 L_odot$: these luminosities place them consistently below the SFR-L[CII] relation observed for low redshift star forming and metal poor galaxies and also below z =5.5 Lyman break galaxies with similar star formation rates. We argue that previous undetections of [CII] in z~7 galaxies with similar or smaller star formation rates are due to selection effects: previous targets were mostly strong Ly$alpha$ emitters and therefore probably metal poor systems, while our galaxies are more representative of the general high redshift star forming population .
89 - M. Franco , D. Elbaz , L. Zhou 2020
In this paper, we extend the source detection in the GOODS-ALMA field (69 arcmin$^2$, rms sensitivity $sigma$ $simeq$ 0.18 mJy.beam$^{-1}$), to deeper levels than presented in Franco et al. (2018). Using positional information at 3.6 and 4.5 $mu$m (from Spitzer-IRAC), we explore the presence of galaxies detected at 1.1 mm with ALMA below our original blind detection limit of 4.8-$sigma$ at which the number of spurious sources starts to dominate over that of real sources. In this Supplementary Catalog, we find a total of 16 galaxies, including 2 galaxies with no counterpart in HST images (also known as optically-dark galaxies) down to a 5$sigma$ limiting depth of H = 28.2 AB (HST/WFC3 F160W). This brings the total sample of GOODS-ALMA 1.1 mm sources to 35 galaxies. Galaxies in the new sample cover a wider dynamic range in redshift ($z$ = 0.65 - 4.73), are on average twice as large (1.3 vs 0.65 kpc) and and have lower stellar mass (M$_{star}^{rm SC}$ = 7.6$times$10$^{10}$M$_odot$ vs M$_{star}^{rm MC}$ = 1.2$times$10$^{11}$M$_odot$). Although exhibiting larger physical sizes, these galaxies have still far-infrared sizes significantly more compact than inferred from their optical emission. We show that the astrometry of the HST image does not only suffer from a global astrometric shift, as already discussed in previous papers, but also from local shifts. These distortions were artificially introduced in the process of building the mosaic of the GOODS-South HST image. By comparing the positions of almost 400 galaxies detected by HST, Pan-STARRS and ALMA, we create a distortion map which can be used to correct for these astrometric issues.
We report new deep ALMA observations aimed at investigating the [CII]158um line and continuum emission in three spectroscopically confirmed Lyman Break Galaxies at 6.8<z<7.1, i.e. well within the re-ionization epoch. With Star Formation Rates of SFR ~ 5-15 Msun/yr these systems are much more representative of the high-z galaxy population than other systems targeted in the past by millimeter observations. For the galaxy with the deepest observation we detect [CII] emission at redshift z=7.107, fully consistent with the Lyalpha redshift, but spatially offset by 0.7 (4 kpc) from the optical emission. At the location of the optical emission, tracing both the Lyalpha line and the far-UV continuum, no [CII] emission is detected in any of the three galaxies, with 3sigma upper limits significantly lower than the [CII] emission observed in lower reshift galaxies. These results suggest that molecular clouds in the central parts of primordial galaxies are rapidly disrupted by stellar feedback. As a result, [CII] emission mostly arises from more external accreting/satellite clumps of neutral gas. These findings are in agreement with recent models of galaxy formation. Thermal far-infrared continuum is not detected in any of the three galaxies. However, the upper limits on the infrared-to-UV emission ratio do not exceed those derived in metal- and dust-poor galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا