The cuprates exhibit a prominent charge-density-wave (CDW) instability with wavevector along [100], i.e., the Cu-O bond direction. Whereas CDW order is most prominent at moderate doping and low temperature, there exists increasing evidence for dynamic charge correlations throughout a large portion of the temperature-doping phase diagram. In particular, signatures of incipient charge order have been observed as phonon softening and/or broadening near the CDW wavevector approximately half-way through the Brillouin zone. Most of this work has focused on moderately-doped cuprates, for which the CDW order is robust, or on optimally-doped samples, for which the superconducting transition temperature ($T_c$) attains its maximum. Here we present a time-of-flight neutron scattering study of phonons in simple-tetragonal $text{HgBa}_2text{CuO}_{4+delta}$ ($T_c = 55$ K) at a low doping level where prior work showed the CDW order to be weak. We employ and showcase a new software-based technique that mines the large number of measured Brillouin zones for useful data in order to improve accuracy and counting statistics. Density-functional theory has not provided an accurate description of phonons in $text{HgBa}_2text{CuO}_{4+delta}$, yet we find the right set of parameters to qualitatively reproduce the data. The notable exception is a dispersion minimum in the longitudinal Cu-O bond-stretching branch along [100]. This discrepancy suggests that, while CDW order is weak, there exist significant dynamic charge correlations in the optic phonon range at low doping, near the edge of the superconducting dome.