Do you want to publish a course? Click here

The Impact of Planetary Rotation Rate on the Reflectance and Thermal Emission Spectrum of Terrestrial Exoplanets Around Sun-like Stars

113   0   0.0 ( 0 )
 Added by Scott Guzewich
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Robust atmospheric and radiative transfer modeling will be required to properly interpret reflected light and thermal emission spectra of terrestrial exoplanets. This will help break observational degeneracies between the numerous atmospheric, planetary, and stellar factors that drive planetary climate. Here we simulate the climates of Earth-like worlds around the Sun with increasingly slow rotation periods, from Earth-like to fully Sun-synchronous, using the ROCKE-3D general circulation model. We then provide these results as input to the Spectral Planet Model (SPM), which employs the SMART radiative transfer model to simulate the spectra of a planet as it would be observed from a future space-based telescope. We find that the primary observable effects of slowing planetary rotation rate are the altered cloud distributions, altitudes, and opacities which subsequently drive many changes to the spectra by altering the absorption band depths of biologically-relevant gas species (e.g., H2O, O2, and O3). We also identify a potentially diagnostic feature of synchronously rotating worlds in mid-infrared H2O absorption/emission lines.



rate research

Read More

The recent detections of temperate terrestrial planets orbiting nearby stars and the promise of characterizing their atmospheres motivates a need to understand how the diversity of possible planetary parameters affects the climate of terrestrial planets. In this work, we investigate the atmospheric circulation and climate of terrestrial exoplanets orbiting both Sun-like and M-dwarf stars over a wide swath of possible planetary parameters, including the planetary rotation period, surface pressure, incident stellar flux, surface gravity, planetary radius, and cloud particle size. We do so using a general circulation model (GCM) that includes non-grey radiative transfer and the effects of clouds. The results from this suite of simulations generally show qualitatively similar dependencies of circulation and climate on planetary parameters as idealized GCMs, with quantitative differences due to the inclusion of additional model physics. Notably, we find that the effective cloud particle size is a key unknown parameter that can greatly affect the climate of terrestrial exoplanets. We confirm a transition between low and high dayside cloud coverage of synchronously rotating terrestrial planets with increasing rotation period. We determine that this cloud transition is due to eddy-driven convergence near the substellar point and should not be parameterization-dependent. Finally, we compute full-phase light curves from our simulations of planets orbiting M-dwarf stars, finding that changing incident stellar flux and rotation period affect observable properties of terrestrial exoplanets. Our GCM results can guide expectations for planetary climate over the broad range of possible terrestrial exoplanets that will be observed with future space telescopes.
The current progress in the detection of terrestrial type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favorable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of astrospheric, atmospheric and surface environments of exoplanets in habitable zones around G-K-M dwarfs including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles, and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favorable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro) physical, chemical, and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the habitable zone to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.
The X-ray and extreme-ultraviolet (EUV) emissions from the low-mass stars significantly affect the evolution of the planetary atmosphere. However, it is, observationally difficult to constrain the stellar high-energy emission because of the strong interstellar extinction of EUV photons. In this study, we simulate the XUV (X-ray+EUV) emission from the Sun-like stars by extending the solar coronal heating model that self-consistently solves, with sufficiently high resolution, the surface-to-coronal energy transport, turbulent coronal heating, and coronal thermal response by conduction and radiation. The simulations are performed with a range of loop lengths and magnetic filling factors at the stellar surface. With the solar parameters, the model reproduces the observed solar XUV spectrum below the Lyman edge, thus validating its capability of predicting the XUV spectra of other Sun-like stars. The model also reproduces the observed nearly-linear relation between the unsigned magnetic flux and the X-ray luminosity. From the simulation runs with various loop lengths and filling factors, we also find a scaling relation, namely $log L_{rm EUV} = 9.93 + 0.67 log L_{rm X}$, where $L_{rm EUV}$ and $L_{rm X}$ are the luminosity in the EUV and X-ray range, respectively, in cgs. By assuming a power-law relation between the Rossby number and the magnetic filling factor, we reproduce the renowned relation between the Rossby number and the X-ray luminosity. We also propose an analytical description of the energy injected into the corona, which, in combination with the conventional Rosner-Tucker-Vaiana scaling law, semi-analytically explains the simulation results. This study refines the concepts of solar and stellar coronal heating and derives a theoretical relation for estimating the hidden stellar EUV luminosity from X-ray observations.
Eccentricity is an important orbital parameter. Understanding its effect on planetary climate and habitability is critical for us to search for a habitable world beyond our solar system. The orbital configurations of M-dwarf planets are always tidally-locked at resonance states, which are quite different from those around Sun-like stars. M-dwarf planets need to be investigated separately. Here we use a comprehensive three-dimensional atmospheric general circulation model to systematically investigate how eccentricity influences climate and habitability of M-dwarf exoplanets. The simulation results show that (1) the seasonal climatic cycles of such planets are very weak even for e = 0.4. It is unlikely that an aqua planet falls out of a habitable zone during its orbit. (2) The annual global mean surface temperature significantly increases with increased eccentricity, due to the decrease of the cloud albedo. Both the runaway greenhouse inner edge and moist greenhouse inner edge shift outward. (3) Planets in an eccentric orbit can be captured in other spin-orbit resonance states which lead to different climate patterns, namely eyeball pattern and striped-ball pattern.The striped-ball pattern has evidently higher surface temperatures due to the reduced planetary albedo. Near the outer edge, planets with p = 1.0 and 2.0 are more resistant to the snowball state due to more locally-concentrated stellar fluxes. Thus, planets with integer spin-orbit resonance numbers have wider habitable zones than those with half-integer spin-orbit resonance states. Above all, as a comparison to circular orbit, eccentricity shrinks the width of the habitable zone.
195 - Sean P. Matt 2012
We use two-dimensional axisymmetric magnetohydrodynamic simulations to compute steady-state solutions for solar-like stellar winds from rotating stars with dipolar magnetic fields. Our parameter study includes 50 simulations covering a wide range of relative magnetic field strengths and rotation rates, extending from the slow- and approaching the fast-magnetic-rotator regimes. Using the simulations to compute the angular momentum loss, we derive a semi-analytic formulation for the external torque on the star that fits all of the simulations to a precision of a few percents. This formula provides a simple method for computing the magnetic braking of sun-like stars due to magnetized stellar winds, which properly includes the dependence on the strength of the magnetic field, mass loss rate, stellar radius, suface gravity, and spin rate and which is valid for both slow and fast rotators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا